File size: 7,347 Bytes
3964763
 
 
 
ddacd23
 
 
 
 
 
 
 
 
 
3964763
 
ddacd23
3964763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddacd23
3964763
 
 
 
 
 
 
 
 
 
ddacd23
3964763
 
 
 
 
ddacd23
3964763
 
 
 
 
ddacd23
3964763
 
 
 
ddacd23
3964763
 
 
 
 
 
 
 
ddacd23
3964763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddacd23
3964763
 
 
 
 
 
 
 
 
 
 
ddacd23
3964763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddacd23
3964763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddacd23
3964763
 
 
ddacd23
3964763
 
 
 
 
ddacd23
3964763
 
ddacd23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def generate(args):
    rank = int(os.getenv("RANK", 0))
    world_size = int(os.getenv("WORLD_SIZE", 1))
    local_rank = int(os.getenv("LOCAL_RANK", 0))
    
    # Set device: use CPU if specified, else use GPU based on rank
    if args.t5_cpu or args.dit_fsdp:  # Use CPU if specified in arguments
        device = torch.device("cpu")
        logging.info("Using CPU for model inference.")
    else:
        device = local_rank
        torch.cuda.set_device(local_rank)  # Ensure proper device assignment if using GPU
        logging.info(f"Using GPU: {device}")

    _init_logging(rank)

    # Distributed setup
    if world_size > 1:
        dist.init_process_group(
            backend="nccl",
            init_method="env://",
            rank=rank,
            world_size=world_size)
    else:
        assert not (
            args.t5_fsdp or args.dit_fsdp
        ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."

    if args.ulysses_size > 1 or args.ring_size > 1:
        assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
        from xfuser.core.distributed import (initialize_model_parallel,
                                             init_distributed_environment)
        init_distributed_environment(
            rank=dist.get_rank(), world_size=dist.get_world_size())

        initialize_model_parallel(
            sequence_parallel_degree=dist.get_world_size(),
            ring_degree=args.ring_size,
            ulysses_degree=args.ulysses_size,
        )

    # Handle prompt extension if needed
    if args.use_prompt_extend:
        if args.prompt_extend_method == "dashscope":
            prompt_expander = DashScopePromptExpander(
                model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
        elif args.prompt_extend_method == "local_qwen":
            prompt_expander = QwenPromptExpander(
                model_name=args.prompt_extend_model,
                is_vl="i2v" in args.task,
                device=rank)
        else:
            raise NotImplementedError(f"Unsupported prompt_extend_method: {args.prompt_extend_method}")

    cfg = WAN_CONFIGS[args.task]
    logging.info(f"Generation job args: {args}")
    logging.info(f"Generation model config: {cfg}")

    # Broadcast base seed across distributed workers
    if dist.is_initialized():
        base_seed = [args.base_seed] if rank == 0 else [None]
        dist.broadcast_object_list(base_seed, src=0)
        args.base_seed = base_seed[0]

    # Set prompt and task details
    if "t2v" in args.task or "t2i" in args.task:
        if args.prompt is None:
            args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
        logging.info(f"Input prompt: {args.prompt}")

        if args.use_prompt_extend:
            logging.info("Extending prompt ...")
            if rank == 0:
                prompt_output = prompt_expander(
                    args.prompt,
                    tar_lang=args.prompt_extend_target_lang,
                    seed=args.base_seed)
                if prompt_output.status == False:
                    logging.info(f"Prompt extension failed: {prompt_output.message}")
                    input_prompt = args.prompt
                else:
                    input_prompt = prompt_output.prompt
            else:
                input_prompt = [None]
            if dist.is_initialized():
                dist.broadcast_object_list(input_prompt, src=0)
            args.prompt = input_prompt[0]
            logging.info(f"Extended prompt: {args.prompt}")

        logging.info("Creating WanT2V pipeline.")
        wan_t2v = wan.WanT2V(
            config=cfg,
            checkpoint_dir=args.ckpt_dir,
            device_id=device,
            rank=rank,
            t5_fsdp=args.t5_fsdp,
            dit_fsdp=args.dit_fsdp,
            use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
            t5_cpu=args.t5_cpu,
        )

        logging.info(f"Generating {'image' if 't2i' in args.task else 'video'} ...")
        video = wan_t2v.generate(
            args.prompt,
            size=SIZE_CONFIGS[args.size],
            frame_num=args.frame_num,
            shift=args.sample_shift,
            sample_solver=args.sample_solver,
            sampling_steps=args.sample_steps,
            guide_scale=args.sample_guide_scale,
            seed=args.base_seed,
            offload_model=args.offload_model)

    else:  # image-to-video
        if args.prompt is None:
            args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
        if args.image is None:
            args.image = EXAMPLE_PROMPT[args.task]["image"]
        logging.info(f"Input prompt: {args.prompt}")
        logging.info(f"Input image: {args.image}")

        img = Image.open(args.image).convert("RGB")
        if args.use_prompt_extend:
            logging.info("Extending prompt ...")
            if rank == 0:
                prompt_output = prompt_expander(
                    args.prompt,
                    tar_lang=args.prompt_extend_target_lang,
                    image=img,
                    seed=args.base_seed)
                if prompt_output.status == False:
                    logging.info(f"Prompt extension failed: {prompt_output.message}")
                    input_prompt = args.prompt
                else:
                    input_prompt = prompt_output.prompt
            else:
                input_prompt = [None]
            if dist.is_initialized():
                dist.broadcast_object_list(input_prompt, src=0)
            args.prompt = input_prompt[0]
            logging.info(f"Extended prompt: {args.prompt}")

        logging.info("Creating WanI2V pipeline.")
        wan_i2v = wan.WanI2V(
            config=cfg,
            checkpoint_dir=args.ckpt_dir,
            device_id=device,
            rank=rank,
            t5_fsdp=args.t5_fsdp,
            dit_fsdp=args.dit_fsdp,
            use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
            t5_cpu=args.t5_cpu,
        )

        logging.info("Generating video ...")
        video = wan_i2v.generate(
            args.prompt,
            img,
            max_area=MAX_AREA_CONFIGS[args.size],
            frame_num=args.frame_num,
            shift=args.sample_shift,
            sample_solver=args.sample_solver,
            sampling_steps=args.sample_steps,
            guide_scale=args.sample_guide_scale,
            seed=args.base_seed,
            offload_model=args.offload_model)

    # Save the output video or image
    if rank == 0:
        if args.save_file is None:
            formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
            formatted_prompt = args.prompt.replace(" ", "_").replace("/", "_")[:50]
            suffix = '.png' if "t2i" in args.task else '.mp4'
            args.save_file = f"{args.task}_{args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}" + suffix

        if "t2i" in args.task:
            logging.info(f"Saving generated image to {args.save_file}")
            cache_image(tensor=video.squeeze(1)[None], save_file=args.save_file, nrow=1, normalize=True)
        else:
            logging.info(f"Saving generated video to {args.save_file}")
            cache_video(tensor=video, save_file=args.save_file)