Spaces:
Running
Running
File size: 6,302 Bytes
4e424ea 0aa6485 4e424ea 711b244 632fdb4 711b244 4e424ea 711b244 4e424ea 711b244 4e424ea 502938a 4e424ea e7dadb6 0aa6485 ca753f0 711b244 4e424ea 711b244 4e424ea 711b244 4e424ea f0f4c78 89f1ae7 01edf3a 4e424ea e7dadb6 711b244 632fdb4 e7dadb6 6662cc5 e7dadb6 632fdb4 711b244 9d714b0 632fdb4 711b244 632fdb4 0aa6485 632fdb4 711b244 665534e 711b244 632fdb4 711b244 632fdb4 711b244 a20dc48 711b244 632fdb4 935512c 632fdb4 711b244 632fdb4 711b244 f0f4c78 711b244 665534e 711b244 0aa6485 f0f4c78 c4fcfaf 8b28352 4e424ea 711b244 4e424ea 711b244 4e424ea 711b244 c81f025 711b244 4e424ea 502938a 4e424ea 0aa6485 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
import re
import subprocess
import time
import select
from tqdm import tqdm
from huggingface_hub import snapshot_download
import torch
# Force the device to CPU
device = torch.device("cpu")
# Download model
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-1.3B",
local_dir="./Wan2.1-T2V-1.3B"
)
print("Model downloaded successfully.")
def infer(prompt, progress=gr.Progress(track_tqdm=True)):
# Configuration:
total_process_steps = 11 # Total INFO messages expected
irrelevant_steps = 4 # First 4 INFO messages are ignored
relevant_steps = total_process_steps - irrelevant_steps # 7 overall steps
# Create overall progress bar (Level 1)
overall_bar = tqdm(total=relevant_steps, desc="Overall Process", position=1,
ncols=120, dynamic_ncols=False, leave=True)
processed_steps = 0
# Regex for video generation progress (Level 3)
progress_pattern = re.compile(r"(\d+)%\|.*\| (\d+)/(\d+)")
video_progress_bar = None
# Variables for sub-step progress bar (Level 2)
sub_bar = None
sub_ticks = 0
sub_tick_total = 1500
video_phase = False
# Command to run the video generation
command = [
"python", "-u", "-m", "generate", # using -u for unbuffered output
"--task", "t2v-1.3B",
"--size", "832*480",
"--ckpt_dir", "./Wan2.1-T2V-1.3B",
"--sample_shift", "8",
"--sample_guide_scale", "6",
"--prompt", prompt,
"--t5_cpu",
"--offload_model", "True", # Change from True (bool) to "True" (str)
"--save_file", "generated_video.mp4"
]
print("Starting video generation process...")
process = subprocess.Popen(command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1)
print("Process started successfully.")
while True:
# Poll stdout with a 40ms timeout.
rlist, _, _ = select.select([process.stdout], [], [], 0.04)
if rlist:
line = process.stdout.readline()
if not line:
break
stripped_line = line.strip()
if not stripped_line:
continue
# Check for video generation progress (Level 3)
progress_match = progress_pattern.search(stripped_line)
if progress_match:
if sub_bar is not None:
if sub_ticks < sub_tick_total:
sub_bar.update(sub_tick_total - sub_ticks)
sub_bar.close()
overall_bar.update(1)
overall_bar.refresh()
sub_bar = None
sub_ticks = 0
video_phase = True
current = int(progress_match.group(2))
total = int(progress_match.group(3))
if video_progress_bar is None:
video_progress_bar = tqdm(total=total, desc="Video Generation", position=0,
ncols=120, dynamic_ncols=True, leave=True)
video_progress_bar.update(current - video_progress_bar.n)
video_progress_bar.refresh()
if video_progress_bar.n >= video_progress_bar.total:
video_phase = False
overall_bar.update(1)
overall_bar.refresh()
video_progress_bar.close()
video_progress_bar = None
continue
# Process INFO messages (Level 2 sub-step)
if "INFO:" in stripped_line:
parts = stripped_line.split("INFO:", 1)
msg = parts[1].strip() if len(parts) > 1 else ""
print(f"[INFO]: {msg}") # Log the message
# For the first 4 INFO messages, simply count them.
if processed_steps < irrelevant_steps:
processed_steps += 1
continue
else:
# A new relevant INFO message has arrived.
if sub_bar is not None:
if sub_ticks < sub_tick_total:
sub_bar.update(sub_tick_total - sub_ticks)
sub_bar.close()
overall_bar.update(1)
overall_bar.refresh()
sub_bar = None
sub_ticks = 0
# Start a new sub-step bar for the current INFO message.
sub_bar = tqdm(total=sub_tick_total, desc=msg, position=2,
ncols=120, dynamic_ncols=False, leave=True)
sub_ticks = 0
continue
else:
print(stripped_line)
else:
# No new data within 40ms.
if sub_bar is not None:
if sub_ticks < sub_tick_total:
sub_bar.update(1)
sub_ticks += 1
sub_bar.refresh()
if process.poll() is not None:
break
# Drain any remaining output.
for line in process.stdout:
print(line.strip())
process.wait()
if video_progress_bar is not None:
video_progress_bar.close()
if sub_bar is not None:
sub_bar.close()
overall_bar.close()
# Add log for successful video generation
if process.returncode == 0:
print("Video generation completed successfully.")
return "generated_video.mp4"
else:
print("Error executing command.")
raise Exception("Error executing command")
# Gradio UI to trigger inference
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Wan 2.1 1.3B")
gr.Markdown("Enjoy this simple working UI, duplicate the space to skip the queue :)")
prompt = gr.Textbox(label="Prompt")
submit_btn = gr.Button("Submit")
video_res = gr.Video(label="Generated Video")
submit_btn.click(
fn=infer,
inputs=[prompt],
outputs=[video_res]
)
demo.queue().launch(show_error=True, show_api=False, ssr_mode=False)
|