File size: 6,302 Bytes
4e424ea
0aa6485
4e424ea
711b244
632fdb4
711b244
4e424ea
711b244
4e424ea
711b244
 
 
 
4e424ea
502938a
 
4e424ea
e7dadb6
0aa6485
ca753f0
711b244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e424ea
711b244
4e424ea
711b244
4e424ea
 
 
f0f4c78
89f1ae7
01edf3a
4e424ea
 
e7dadb6
 
711b244
 
 
 
632fdb4
 
e7dadb6
6662cc5
e7dadb6
632fdb4
711b244
9d714b0
632fdb4
 
 
 
 
 
 
 
711b244
632fdb4
0aa6485
632fdb4
711b244
 
 
 
 
 
 
 
 
665534e
 
 
711b244
 
 
 
 
 
 
 
 
 
632fdb4
 
711b244
632fdb4
711b244
 
a20dc48
711b244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632fdb4
935512c
632fdb4
711b244
 
 
 
 
 
 
632fdb4
 
 
711b244
 
 
f0f4c78
711b244
665534e
711b244
 
 
0aa6485
 
f0f4c78
c4fcfaf
8b28352
4e424ea
711b244
 
4e424ea
711b244
4e424ea
 
711b244
 
c81f025
711b244
4e424ea
 
 
502938a
 
 
4e424ea
 
0aa6485
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import re
import subprocess
import time
import select
from tqdm import tqdm
from huggingface_hub import snapshot_download
import torch

# Force the device to CPU
device = torch.device("cpu")

# Download model
snapshot_download(
    repo_id="Wan-AI/Wan2.1-T2V-1.3B",
    local_dir="./Wan2.1-T2V-1.3B"
)
print("Model downloaded successfully.")

def infer(prompt, progress=gr.Progress(track_tqdm=True)):
    # Configuration:
    total_process_steps = 11          # Total INFO messages expected
    irrelevant_steps = 4              # First 4 INFO messages are ignored  
    relevant_steps = total_process_steps - irrelevant_steps  # 7 overall steps

    # Create overall progress bar (Level 1)
    overall_bar = tqdm(total=relevant_steps, desc="Overall Process", position=1,
                       ncols=120, dynamic_ncols=False, leave=True)
    processed_steps = 0

    # Regex for video generation progress (Level 3)
    progress_pattern = re.compile(r"(\d+)%\|.*\| (\d+)/(\d+)")
    video_progress_bar = None

    # Variables for sub-step progress bar (Level 2)
    sub_bar = None
    sub_ticks = 0
    sub_tick_total = 1500
    video_phase = False

    # Command to run the video generation
    command = [
        "python", "-u", "-m", "generate",  # using -u for unbuffered output
        "--task", "t2v-1.3B",
        "--size", "832*480",
        "--ckpt_dir", "./Wan2.1-T2V-1.3B",
        "--sample_shift", "8",
        "--sample_guide_scale", "6",
        "--prompt", prompt,
        "--t5_cpu",
        "--offload_model", "True",  # Change from True (bool) to "True" (str)
        "--save_file", "generated_video.mp4"
    ]
    print("Starting video generation process...")

    process = subprocess.Popen(command,
                               stdout=subprocess.PIPE,
                               stderr=subprocess.STDOUT,
                               text=True,
                               bufsize=1)

    print("Process started successfully.")
    

    while True:
        # Poll stdout with a 40ms timeout.
        rlist, _, _ = select.select([process.stdout], [], [], 0.04)
        if rlist:
            line = process.stdout.readline()
            if not line:
                break
            stripped_line = line.strip()
            if not stripped_line:
                continue

            # Check for video generation progress (Level 3)
            progress_match = progress_pattern.search(stripped_line)
            
            if progress_match:
                if sub_bar is not None:
                    if sub_ticks < sub_tick_total:
                        sub_bar.update(sub_tick_total - sub_ticks)
                    sub_bar.close()
                    overall_bar.update(1)
                    overall_bar.refresh()
                    sub_bar = None
                    sub_ticks = 0
                video_phase = True
                current = int(progress_match.group(2))
                total = int(progress_match.group(3))
                if video_progress_bar is None:
                    video_progress_bar = tqdm(total=total, desc="Video Generation", position=0,
                                              ncols=120, dynamic_ncols=True, leave=True)
                video_progress_bar.update(current - video_progress_bar.n)
                video_progress_bar.refresh()
                if video_progress_bar.n >= video_progress_bar.total:
                    video_phase = False
                    overall_bar.update(1)
                    overall_bar.refresh()
                    video_progress_bar.close()
                    video_progress_bar = None
                continue

            # Process INFO messages (Level 2 sub-step)
            if "INFO:" in stripped_line:
                parts = stripped_line.split("INFO:", 1)
                msg = parts[1].strip() if len(parts) > 1 else ""
                print(f"[INFO]: {msg}")  # Log the message

                # For the first 4 INFO messages, simply count them.
                if processed_steps < irrelevant_steps:
                    processed_steps += 1
                    continue
                else:
                    # A new relevant INFO message has arrived.
                    if sub_bar is not None:
                        if sub_ticks < sub_tick_total:
                            sub_bar.update(sub_tick_total - sub_ticks)
                        sub_bar.close()
                        overall_bar.update(1)
                        overall_bar.refresh()
                        sub_bar = None
                        sub_ticks = 0
                    # Start a new sub-step bar for the current INFO message.
                    sub_bar = tqdm(total=sub_tick_total, desc=msg, position=2,
                                   ncols=120, dynamic_ncols=False, leave=True)
                    sub_ticks = 0
                continue
            else:
                print(stripped_line)
        else:
            # No new data within 40ms.
            if sub_bar is not None:
                if sub_ticks < sub_tick_total:
                    sub_bar.update(1)
                    sub_ticks += 1
                    sub_bar.refresh()
        if process.poll() is not None:
            break

    # Drain any remaining output.
    for line in process.stdout:
        print(line.strip())
    process.wait()
    if video_progress_bar is not None:
        video_progress_bar.close()
    if sub_bar is not None:
        sub_bar.close()
    overall_bar.close()

    # Add log for successful video generation
    if process.returncode == 0:
        print("Video generation completed successfully.")
        return "generated_video.mp4"
    else:
        print("Error executing command.")
        raise Exception("Error executing command")

# Gradio UI to trigger inference
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# Wan 2.1 1.3B")
        gr.Markdown("Enjoy this simple working UI, duplicate the space to skip the queue :)")
        prompt = gr.Textbox(label="Prompt")
        submit_btn = gr.Button("Submit")
        video_res = gr.Video(label="Generated Video")

    submit_btn.click(
        fn=infer,
        inputs=[prompt],
        outputs=[video_res]
    )

demo.queue().launch(show_error=True, show_api=False, ssr_mode=False)