import argparse import os import subprocess # Ensure subprocess is imported import torch from huggingface_hub import snapshot_download # Arguments parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="t2v-1.3B") parser.add_argument("--size", type=str, default="200*200") parser.add_argument("--frame_num", type=int, default=60) parser.add_argument("--sample_steps", type=int, default=20) parser.add_argument("--ckpt_dir", type=str, default="./Wan2.1-T2V-1.3B") parser.add_argument("--offload_model", type=bool, default=True, help="Whether to offload the model (True/False)") parser.add_argument("--t5_cpu", action="store_true", help="Use CPU for T5 model (optional)") parser.add_argument("--sample_shift", type=int, default=8, help="Sampling shift for generation") parser.add_argument("--sample_guide_scale", type=int, default=6, help="Sampling guide scale for generation") parser.add_argument("--prompt", type=str, required=True) args = parser.parse_args() # Log input parameters print(f"Generating video with the following settings:\n" f"Task: {args.task}\n" f"Resolution: {args.size}\n" f"Frames: {args.frame_num}\n" f"Sample Steps: {args.sample_steps}\n" f"Prompt: {args.prompt}\n" f"Sample Shift: {args.sample_shift}\n" f"Sample Guide Scale: {args.sample_guide_scale}\n" f"Using T5 on CPU: {args.t5_cpu}\n" f"Offload Model: {args.offload_model}") # Ensure the model is downloaded if not os.path.exists(args.ckpt_dir): print("🔄 Downloading WAN 2.1 - 1.3B model from Hugging Face...") snapshot_download(repo_id="Wan-AI/Wan2.1-T2V-1.3B", local_dir=args.ckpt_dir) # Free up GPU memory if torch.cuda.is_available(): torch.cuda.empty_cache() torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # Command to run the model generation offload_model_value = "True" if args.offload_model else "False" command = f"python generate.py --task t2v-1.3B --size 480832 --frame_num 1 --ckpt_dir ./Wan2.1-T2V-1.3B --offload_model True --t5_cpu --sample_shift 8 --sample_guide_scale 6 --prompt \"{args.prompt}\"" # Run the model process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() # Print logs for debugging print("🔹 Output:", stdout.decode()) print("🔺 Error:", stderr.decode()) # Verify if video was created if os.path.exists("output.mp4"): print("✅ Video generated successfully: output.mp4") else: print("❌ Error: Video file not found!")