Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from google import genai
|
3 |
import os
|
4 |
-
import sys
|
5 |
-
import io
|
6 |
-
import pandas as pd # We will use Pandas to create a DataFrame
|
7 |
|
8 |
# Load API key from environment variable
|
9 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
@@ -11,7 +8,7 @@ GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
|
11 |
# Initialize the Google GenAI client
|
12 |
client = genai.Client(api_key=GEMINI_API_KEY)
|
13 |
|
14 |
-
# Function to interact with the Gemini API
|
15 |
def generate_content(prompt):
|
16 |
# Generate content using the Gemini API
|
17 |
response = client.models.generate_content(
|
@@ -19,71 +16,37 @@ def generate_content(prompt):
|
|
19 |
contents=[prompt]
|
20 |
)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
def execute_code(code):
|
27 |
-
try:
|
28 |
-
# Redirect stdout to capture print statements from the code
|
29 |
-
output = io.StringIO()
|
30 |
-
sys.stdout = output
|
31 |
-
exec(code) # Execute the Python code
|
32 |
-
sys.stdout = sys.__stdout__ # Reset stdout
|
33 |
-
return output.getvalue() # Return captured output
|
34 |
-
except Exception as e:
|
35 |
-
return f"Error: {str(e)}" # Return error message if execution fails
|
36 |
-
|
37 |
-
# Function to format result as a table
|
38 |
-
def format_result_as_table(result):
|
39 |
-
try:
|
40 |
-
# Split result into key-value pairs (assuming each line is a pair)
|
41 |
-
rows = [line.split(':') for line in result.split('\n') if ':' in line]
|
42 |
-
# Create DataFrame
|
43 |
-
df = pd.DataFrame(rows, columns=["Key", "Value"])
|
44 |
-
return df
|
45 |
-
except Exception as e:
|
46 |
-
return pd.DataFrame([["Error", str(e)]], columns=["Key", "Value"])
|
47 |
|
48 |
# Create Gradio interface using Blocks for better control
|
49 |
with gr.Blocks() as interface:
|
50 |
# Title and Description
|
51 |
-
gr.Markdown("# Gemini AI Content Generator
|
52 |
-
gr.Markdown("Provide a prompt
|
53 |
|
54 |
-
# Text input field
|
55 |
-
prompt_input = gr.Textbox(label="Enter your prompt
|
56 |
-
submit_button = gr.Button("Generate
|
57 |
|
58 |
-
# Output
|
59 |
-
|
60 |
-
execution_section = gr.DataFrame(headers=["Key", "Value"], datatype=["str", "str"], interactive=False)
|
61 |
|
62 |
-
# Loading spinner
|
63 |
loading_spinner = gr.HTML("<p style='color: #4CAF50;'>Loading... Please wait...</p>")
|
64 |
loading_spinner.visible = False # Initially hidden
|
65 |
|
66 |
# Define button click interaction
|
67 |
def on_submit(prompt):
|
68 |
-
loading_spinner.visible = True
|
69 |
-
result = generate_content(prompt)
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
if "```python" in result: # If code is returned, extract Python code and execute it
|
74 |
-
code = result.split("```python")[1].split("```")[0].strip()
|
75 |
-
execution_result = execute_code(code)
|
76 |
-
result = f"**Code Executed Result:**\n\n{execution_result}"
|
77 |
-
else:
|
78 |
-
result = f"**Generated Content:**\n\n{result}"
|
79 |
-
|
80 |
-
# Convert the result into a table
|
81 |
-
table_data = format_result_as_table(result)
|
82 |
-
loading_spinner.visible = False # Hide loading message
|
83 |
-
return code_section, table_data, loading_spinner # Return the sections with content and execution result
|
84 |
|
85 |
# Link the button with the function
|
86 |
-
submit_button.click(on_submit, inputs=prompt_input, outputs=[
|
87 |
|
88 |
# Launch Gradio interface
|
89 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from google import genai
|
3 |
import os
|
|
|
|
|
|
|
4 |
|
5 |
# Load API key from environment variable
|
6 |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
|
|
8 |
# Initialize the Google GenAI client
|
9 |
client = genai.Client(api_key=GEMINI_API_KEY)
|
10 |
|
11 |
+
# Function to interact with the Gemini API
|
12 |
def generate_content(prompt):
|
13 |
# Generate content using the Gemini API
|
14 |
response = client.models.generate_content(
|
|
|
16 |
contents=[prompt]
|
17 |
)
|
18 |
|
19 |
+
# Format the result for better readability
|
20 |
+
result_text = response.text.strip() # Remove extra spaces and line breaks
|
21 |
+
formatted_response = f"**AI Generated Content:**\n\n{result_text}"
|
22 |
+
return formatted_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Create Gradio interface using Blocks for better control
|
25 |
with gr.Blocks() as interface:
|
26 |
# Title and Description
|
27 |
+
gr.Markdown("# Gemini AI Content Generator")
|
28 |
+
gr.Markdown("Provide a prompt and get an explanation from Gemini AI.\n\nThe AI will return a well-formatted response.")
|
29 |
|
30 |
+
# Text input field and submit button
|
31 |
+
prompt_input = gr.Textbox(label="Enter your prompt:", placeholder="How does AI work?", lines=2)
|
32 |
+
submit_button = gr.Button("Generate Content")
|
33 |
|
34 |
+
# Output area for the result
|
35 |
+
output_area = gr.Markdown()
|
|
|
36 |
|
37 |
+
# Loading spinner (show loading during API call)
|
38 |
loading_spinner = gr.HTML("<p style='color: #4CAF50;'>Loading... Please wait...</p>")
|
39 |
loading_spinner.visible = False # Initially hidden
|
40 |
|
41 |
# Define button click interaction
|
42 |
def on_submit(prompt):
|
43 |
+
loading_spinner.visible = True
|
44 |
+
result = generate_content(prompt)
|
45 |
+
loading_spinner.visible = False
|
46 |
+
return result, loading_spinner
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Link the button with the function
|
49 |
+
submit_button.click(on_submit, inputs=prompt_input, outputs=[output_area, loading_spinner])
|
50 |
|
51 |
# Launch Gradio interface
|
52 |
+
interface.launch()
|