Spaces:
Sleeping
Sleeping
File size: 1,323 Bytes
2fb4096 a8360a2 2fb4096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import requests
import os
# Load API URL and token from environment variables
API_URL = os.getenv("HF_API_URL", "https://api-inference.huggingface.co/models/your-model")
API_TOKEN = os.getenv("HF_API_TOKEN", "your-default-token") # Replace with your actual token for fallback
print(API_URL)
# Function to call the Hugging Face Inference API
def call_huggingface_api(input_text):
headers = {"Authorization": f"Bearer {API_TOKEN}"}
payload = {"inputs": input_text}
try:
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
data = response.json()
return f"Question: {input_text}\nAnswer: {data.get('answer', 'No answer found.')}\nConfidence: {data.get('confidence', 'N/A')}"
else:
return f"Error: {response.status_code} - {response.text}"
except Exception as e:
return f"Error during API call: {e}"
# Gradio Interface
gr.Interface(
fn=call_huggingface_api,
inputs="text",
outputs="text",
examples=[
["Who is rahul7star?"],
["What does Rahul7star do?"],
["Tell me about Rahul7star"]
],
title="Ask Rahul7star AI",
description="Ask questions about rahul7star and get answers powered by Hugging Face Inference API."
).launch()
|