import gradio as gr import torch from fastai.text.all import load_learner from huggingface_hub import hf_hub_download # Step 8: Download the model from Hugging Face and load it def load_model(): try: # Download the model .pth file from Hugging Face model_path = hf_hub_download( repo_id="rahul7star/fastai-rahul-text-model-v02", filename="model.pth" ) # Load the model using FastAI's load_learner method learn = load_learner(model_path) print("Model loaded successfully from Hugging Face.") return learn except Exception as e: print(f"Error loading the model: {e}") return None # Load the model learn = load_model() # Step 9: Define the Gradio Interface def predict(input_text): try: # Get prediction from the model pred, _, probs = learn.predict(input_text) return f"Prediction: {pred}, Confidence: {probs.max():.2f}" except Exception as e: return f"Error during prediction: {e}" # Step 10: Create Gradio Interface gr.Interface(fn=predict, inputs="text", outputs="text").launch()