File size: 1,413 Bytes
8979de3
e6cd92e
5f10744
6880433
828cc2a
 
 
 
 
8979de3
 
aefc8e0
8979de3
 
aefc8e0
8979de3
aefc8e0
8979de3
 
 
 
 
 
fde9f2e
aefc8e0
8979de3
6880433
f0744ba
 
 
 
828cc2a
5f10744
 
 
 
 
 
 
6880433
e6cd92e
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gradio as gr
from fastai.text.all import load_learner
from huggingface_hub import hf_hub_download

# Step 1: Redefine Custom Functions
def get_x(x): return x['input']
def get_y(x): return x['output']

# Step 2: Load the model from Hugging Face
def load_model():
    try:
      
        model_path = hf_hub_download(
            repo_id="rahul7star/fastai-rahul-text-model-v02",
            filename="rahul9star_full_learner.pkl"  
        )
       
        learn = load_learner(model_path)
        print("Model loaded successfully from Hugging Face.")
        return learn
    except Exception as e:
        print(f"Error loading the model: {e}")
        return None


learn = load_model()

# Check if the model is loaded successfully
if learn is None:
    raise ValueError("Failed to load the model")

# Step 3: Define the Gradio Interface
def predict(input_text):
    try:
        # Get prediction from the model
        pred, _, probs = learn.predict(input_text)
        return f"Prediction: {pred}, Confidence: {probs.max():.2f}"
    except Exception as e:
        return f"Error during prediction: {e}"

# Step 4: Create Gradio Interface with Examples
gr.Interface(
    fn=predict, 
    inputs="text", 
    outputs="text",
    examples=[
        ["Who is rahul7star?"],  # Example 1
        ["What does Rahul7star do?"],  # Example 2
        ["Tell me about Rahul7star"]  # Example 3
    ]
).launch()