Spaces:
Running
Running
File size: 1,375 Bytes
ce9be4a 6880433 ce9be4a 6880433 ce9be4a 6880433 ce9be4a 6880433 ce9be4a 6880433 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import torch
import gradio as gr
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
# Load the model and tokenizer from Hugging Face
model = AutoModelForQuestionAnswering.from_pretrained("rahul7star/fastai-rahul-text-model-v02")
tokenizer = AutoTokenizer.from_pretrained("rahul7star/fastai-rahul-text-model-v02")
# Function to handle predictions (for question-answering tasks)
def get_answer(question):
# Tokenize the input question
inputs = tokenizer(question, return_tensors="pt")
# Get model prediction (start and end positions for the answer)
with torch.no_grad():
outputs = model(**inputs)
# Extract start and end positions of the predicted answer
start_idx = torch.argmax(outputs.start_logits)
end_idx = torch.argmax(outputs.end_logits)
# Convert the token IDs back to text
answer_tokens = inputs.input_ids[0][start_idx:end_idx+1]
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
return answer
# Set up the Gradio interface
interface = gr.Interface(
fn=get_answer, # Function to call for inference
inputs=gr.Textbox(label="Ask a Question"), # Input field for question
outputs=gr.Textbox(label="Answer"), # Output field for the model's answer
live=True # Set to True for real-time interaction
)
# Launch the interface
interface.launch()
|