File size: 14,487 Bytes
0245be8 c095e79 0245be8 c095e79 0245be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import random
import openai
import json
from langchain.docstore.document import Document as LangChainDocument
from langchain.embeddings.openai import OpenAIEmbeddings
from fastapi import HTTPException
from uuid import UUID, uuid4
from langchain.text_splitter import (
CharacterTextSplitter,
MarkdownTextSplitter
)
from sqlmodel import (
Session,
text
)
from util import (
sanitize_input,
sanitize_output
)
from langchain import OpenAI
from typing import (
List,
Union,
Optional,
Dict,
Tuple,
Any
)
from helpers import (
get_user_by_uuid_or_identifier,
get_chat_session_by_uuid
)
from models import (
User,
Organization,
Project,
Node,
ChatSession,
ChatSessionResponse,
get_engine
)
from config import (
CHANNEL_TYPE,
DOCUMENT_TYPE,
LLM_MODELS,
LLM_DISTANCE_THRESHOLD,
LLM_DEFAULT_TEMPERATURE,
LLM_MAX_OUTPUT_TOKENS,
LLM_CHUNK_SIZE,
LLM_CHUNK_OVERLAP,
LLM_MIN_NODE_LIMIT,
LLM_DEFAULT_DISTANCE_STRATEGY,
VECTOR_EMBEDDINGS_COUNT,
DISTANCE_STRATEGY,
AGENT_NAMES,
logger
)
# -------------
# Query the LLM
# -------------
def chat_query(
query_str: str,
session_id: Optional[Union[str, UUID]] = None,
meta: Optional[Dict[str, Any]] = {},
channel: Optional[CHANNEL_TYPE] = None,
identifier: Optional[str] = None,
project: Optional[Project] = None,
organization: Optional[Organization] = None,
session: Optional[Session] = None,
user_data: Optional[Dict[str, Any]] = None,
distance_strategy: Optional[DISTANCE_STRATEGY] = DISTANCE_STRATEGY.EUCLIDEAN,
distance_threshold: Optional[float] = LLM_DISTANCE_THRESHOLD,
node_limit: Optional[int] = LLM_MIN_NODE_LIMIT,
model: Optional[LLM_MODELS] = LLM_MODELS.GPT_35_TURBO,
max_output_tokens: Optional[int] = LLM_MAX_OUTPUT_TOKENS,
) -> ChatSessionResponse:
"""
Steps:
1. β
Clean user input
2. β
Create input embeddings
3. β
Search for similar nodes
4. β
Create prompt template w/ similar nodes
5. β
Submit prompt template to LLM
6. β
Get response from LLM
7. Create ChatSession
- Store embeddings
- Store tags
- Store is_escalate
8. Return response
"""
meta = {}
agent_name = None
embeddings = []
tags = []
is_escalate = False
response_message = None
prompt = None
context_str = None
MODEL_TOKEN_LIMIT = (
model.token_limit if isinstance(model, OpenAI) else LLM_MAX_OUTPUT_TOKENS
)
# ---------------------------------------------
# Generate a new session ID if none is provided
# ---------------------------------------------
prev_chat_session = (
get_chat_session_by_uuid(session_id=session_id, session=session)
if session_id
else None
)
# If we were given an invalid session_id
if session_id and not prev_chat_session:
return HTTPException(
status_code=404, detail=f"Chat session with ID {session_id} not found."
)
# If we were given a valid session_id
elif session_id and prev_chat_session and prev_chat_session.meta.get("agent"):
agent_name = prev_chat_session.meta["agent"]
# If this is a new session, generate a new ID
else:
session_id = str(uuid4())
meta["agent"] = agent_name if agent_name else random.choice(AGENT_NAMES)
# ----------------
# Clean user input
# ----------------
query_str = sanitize_input(query_str)
logger.debug(f"π¬ Query received: {query_str}")
# ----------------
# Get token counts
# ----------------
query_token_count = get_token_count(query_str)
prompt_token_count = 0
# -----------------------
# Create input embeddings
# -----------------------
arr_query, embeddings = get_embeddings(query_str)
query_embeddings = embeddings[0]
# ------------------------
# Search for similar nodes
# ------------------------
nodes = get_nodes_by_embedding(
query_embeddings,
node_limit,
distance_strategy=distance_strategy
if isinstance(distance_strategy, DISTANCE_STRATEGY)
else LLM_DEFAULT_DISTANCE_STRATEGY,
distance_threshold=distance_threshold,
session=session,
)
if len(nodes) > 0:
if (not project or not organization) and session:
# get document from Node via session object:
document = session.get(Node, nodes[0].id).document
project = document.project
organization = project.organization
# ----------------------
# Create prompt template
# ----------------------
# concatenate all nodes into a single string
context_str = "\n\n".join([node.text for node in nodes])
# -------------------------------------------
# Let's make sure we don't exceed token limit
# -------------------------------------------
context_token_count = get_token_count(context_str)
# ----------------------------------------------
# if token count exceeds limit, truncate context
# ----------------------------------------------
if (
context_token_count + query_token_count + prompt_token_count
) > MODEL_TOKEN_LIMIT:
logger.debug("π§ Exceeded token limit, truncating context")
token_delta = MODEL_TOKEN_LIMIT - (query_token_count + prompt_token_count)
context_str = context_str[:token_delta]
# create prompt template
system_prompt, user_prompt = get_prompt_template(
user_query=query_str,
context_str=context_str,
project=project,
organization=organization,
agent=agent_name,
)
prompt_token_count = get_token_count(prompt)
token_count = context_token_count + query_token_count + prompt_token_count
# ---------------------------
# Get response from LLM model
# ---------------------------
# It should return a JSON dict
llm_response = json.loads(
retrieve_llm_response(
user_prompt,
model=model,
max_output_tokens=max_output_tokens,
prefix_messages=system_prompt,
)
)
tags = llm_response.get("tags", [])
is_escalate = llm_response.get("is_escalate", False)
response_message = llm_response.get("message", None)
else:
logger.info("π«π No similar nodes found, returning default response")
# ----------------
# Get user details
# ----------------
user = get_user_by_uuid_or_identifier(
identifier, session=session, should_except=False
)
if not user:
logger.debug("π«π€ User not found, creating new user")
user_params = {
"identifier": identifier,
"identifier_type": channel.value
if isinstance(channel, CHANNEL_TYPE)
else channel,
}
if user_data:
user_params = {**user_params, **user_data}
user = User.create(user_params)
else:
logger.debug(f"π€ User found: {user}")
# -----------------------------------
# Calculate input and response tokens
# -----------------------------------
token_count = get_token_count(prompt) + get_token_count(response_message)
# ---------------
# Add to meta tag
# ---------------
if tags:
meta["tags"] = tags
meta["is_escalate"] = is_escalate
if session_id:
meta["session_id"] = session_id
chat_session = ChatSession(
user_id=user.id,
session_id=session_id,
project_id=project.id if project else None,
channel=channel.value if isinstance(channel, CHANNEL_TYPE) else channel,
user_message=query_str,
embeddings=query_embeddings,
token_count=token_count if token_count > 0 else None,
response=response_message,
meta=meta,
)
if session:
session.add(chat_session)
session.commit()
session.refresh(chat_session)
else:
with Session(get_engine()) as session:
session.add(chat_session)
session.commit()
session.refresh(chat_session)
return chat_session
# ------------------------------
# Retrieve a random agent's name
# ------------------------------
def get_random_agent():
return random.choice(AGENT_NAMES)
# ------------------------
# Retrieve prompt template
# ------------------------
def get_prompt_template(
user_query: str = None,
context_str: str = None,
project: Optional[Project] = None,
organization: Optional[Organization] = None,
agent: str = None,
) -> str:
agent = f"{agent}, " if agent else ""
user_query = user_query if user_query else ""
context_str = context_str if context_str else ""
organization = (
project.organization.display_name
if project
else organization.display_name
if organization
else None
)
if not context_str or not user_query:
raise ValueError(
"Missing required arguments context_str, user_query, organization, agent"
)
system_prompt = [
{
"role": "system",
"content": f"""[AGENT]:
I am {agent} a very kind and enthusiastic customer support agent who loves to help customers. I am working on the behalf of "{organization}"
Given the following document from "{organization}", I will answer the [USER] questions using only the [DOCUMENT] and following the [RULES].
[DOCUMENT]:
{context_str}
[RULES]:
I will answer the user's questions using only the [DOCUMENT] provided. I will abide by the following rules:
- I am a kind and helpful human, the best customer support agent in existence
- I never lie or invent answers not explicitly provided in [DOCUMENT]
- If I am unsure of the answer response or the answer is not explicitly contained in [DOCUMENT], I will say: "I apologize, I'm not sure how to help with that".
- I always keep my answers short, relevant and concise.
- I will always respond in JSON format with the following keys: "message" my response to the user, "tags" an array of short labels categorizing user input, "is_escalate" a boolean, returning false if I am unsure and true if I do have a relevant answer
""",
}
]
return (system_prompt, f"[USER]:\n{user_query}")
# ----------------------------
# Get the count of tokens used
# ----------------------------
# https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def get_token_count(text: str):
if not text:
return 0
return OpenAI().get_num_tokens(text=text)
# --------------------------------------------
# Query embedding search for similar documents
# --------------------------------------------
def get_nodes_by_embedding(
embeddings: List[float],
k: int = LLM_MIN_NODE_LIMIT,
distance_strategy: Optional[DISTANCE_STRATEGY] = LLM_DEFAULT_DISTANCE_STRATEGY,
distance_threshold: Optional[float] = LLM_DISTANCE_THRESHOLD,
session: Optional[Session] = None,
) -> List[Node]:
# Convert embeddings array into sql string
embeddings_str = str(embeddings)
if distance_strategy == DISTANCE_STRATEGY.EUCLIDEAN:
distance_fn = "match_node_euclidean"
elif distance_strategy == DISTANCE_STRATEGY.COSINE:
distance_fn = "match_node_cosine"
elif distance_strategy == DISTANCE_STRATEGY.MAX_INNER_PRODUCT:
distance_fn = "match_node_max_inner_product"
else:
raise Exception(f"Invalid distance strategy {distance_strategy}")
# ---------------------------
# Lets do a similarity search
# ---------------------------
sql = f"""SELECT * FROM {distance_fn}(
'{embeddings_str}'::vector({VECTOR_EMBEDDINGS_COUNT}),
{float(distance_threshold)}::double precision,
{int(k)});"""
# logger.debug(f'π Query: {sql}')
# Execute query, convert results to Node objects
if not session:
with Session(get_engine()) as session:
nodes = session.exec(text(sql)).all()
else:
nodes = session.exec(text(sql)).all()
return [Node.by_uuid(str(node[0])) for node in nodes] if nodes else []
# --------------
# Queries OpenAI
# --------------
def retrieve_llm_response(
query_str: str,
model: Optional[LLM_MODELS] = LLM_MODELS.GPT_35_TURBO,
temperature: Optional[float] = LLM_DEFAULT_TEMPERATURE,
max_output_tokens: Optional[int] = LLM_MAX_OUTPUT_TOKENS,
prefix_messages: Optional[List[dict]] = None,
):
llm = OpenAI(
temperature=temperature,
model_name=model.model_name
if isinstance(model, LLM_MODELS)
else LLM_MODELS.GPT_35_TURBO.model_name,
max_tokens=max_output_tokens,
prefix_messages=prefix_messages,
)
try:
result = llm(prompt=query_str)
except openai.error.InvalidRequestError as e:
logger.error(f"π¨ LLM error: {e}")
raise HTTPException(status_code=500, detail=f"LLM error: {e}")
logger.debug(f"π¬ LLM result: {str(result)}")
return sanitize_output(result)
# --------------------------
# Create document embeddings
# --------------------------
def get_embeddings(
document_data: str,
document_type: DOCUMENT_TYPE = DOCUMENT_TYPE.PLAINTEXT,
) -> Tuple[List[str], List[float]]:
documents = [LangChainDocument(page_content=document_data)]
logger.debug(documents)
if document_type == DOCUMENT_TYPE.MARKDOWN:
doc_splitter = MarkdownTextSplitter(
chunk_size=LLM_CHUNK_SIZE, chunk_overlap=LLM_CHUNK_OVERLAP
)
else:
doc_splitter = CharacterTextSplitter(
chunk_size=LLM_CHUNK_SIZE, chunk_overlap=LLM_CHUNK_OVERLAP
)
# Returns an array of Documents
split_documents = doc_splitter.split_documents(documents)
# Lets convert them into an array of strings for OpenAI
arr_documents = [doc.page_content for doc in split_documents]
# https://github.com/hwchase17/langchain/blob/d18b0caf0e00414e066c9903c8df72bb5bcf9998/langchain/embeddings/openai.py#L219
embed_func = OpenAIEmbeddings()
embeddings = embed_func.embed_documents(
texts=arr_documents, chunk_size=LLM_CHUNK_SIZE
)
return arr_documents, embeddings |