File size: 4,916 Bytes
0245be8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from enum import Enum, IntEnum
from dotenv import load_dotenv
from pathlib import Path
import logging
import sys
import os
# -------
# Logging
# -------
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
logger = logging.getLogger(__name__)
# ----------------
# Environment vars
# ----------------
env = os.getenv("ENV", None)
if not env:
# Check up to 2 levels up for .env-{env} file
env_file = Path(__file__).parent.parent.parent / '.env'
logger.debug(f"Loading env file: {env_file}")
if os.path.exists(env_file):
load_dotenv(dotenv_path=env_file)
else:
raise Exception(f"Env file {env})file not found")
# -----------------------
# Configuration constants
# -----------------------
readme_file = Path(__file__).parent / "API.md"
readme_str = (
f"""
<details>
<summary>π API.MD</summary>
{readme_file.read_text()}
</details>
"""
if readme_file.exists()
else ""
)
APP_NAME = "API Documentation"
APP_VERSION = "0.0.1"
APP_DESCRIPTION = f"""

---
## About
π¬ RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain
- π Resources: [https://rasagpt.dev](https://rasagpt.dev)
- π§βπ» Github: [https://github.com/paulpierre/RasaGPT](https://github.com/paulpierre/RasaGPT)
- π§ Author: [@paulpierre](https://twitter.com/paulpierre)
{readme_str}
"""
APP_ICON = "/public/img/rasagpt-icon-200x200.png"
APP_LOGO = "/public/img/rasagpt-logo-1.png"
FILE_UPLOAD_PATH = os.getenv("FILE_UPLOAD_PATH", "/tmp")
# Database configurations
POSTGRES_USER = os.getenv("POSTGRES_USER", "postgres")
POSTGRES_PASSWORD = os.getenv("POSTGRES_PASSWORD", "postgres")
DB_HOST = os.getenv("DB_HOST", "localhost")
DB_PORT = os.getenv("DB_PORT", 5432)
DB_USER = os.getenv("DB_USER")
DB_NAME = os.getenv("DB_NAME")
DB_PASSWORD = os.getenv("DB_PASSWORD")
DSN = f"postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
SU_DSN = (
f"postgresql://{POSTGRES_USER}:{POSTGRES_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
)
RASA_WEBHOOK_HOST = os.getenv("RASA_WEBHOOK_HOST", "rasa-core")
RASA_WEBHOOK_PORT = os.getenv("RASA_WEBHOOK_PORT", 5005)
RASA_WEBHOOK_URL = f"http://{RASA_WEBHOOK_HOST}:{RASA_WEBHOOK_PORT}"
# LLM configurations
MODEL_NAME = os.getenv("MODEL_NAME")
LLM_DEFAULT_TEMPERATURE = float(os.getenv("LLM_DEFAULT_TEMPERATURE", 0.0))
LLM_CHUNK_SIZE = int(os.getenv("LLM_CHUNK_SIZE", 512))
LLM_CHUNK_OVERLAP = int(os.getenv("LLM_CHUNK_OVERLAP", 20))
LLM_DISTANCE_THRESHOLD = float(os.getenv("LLM_DISTANCE_THRESHOLD", 0.5))
LLM_MAX_OUTPUT_TOKENS = int(os.getenv("LLM_MAX_OUTPUT_TOKENS", 256))
LLM_MIN_NODE_LIMIT = int(os.getenv("LLM_MIN_NODE_LIMIT", 3))
class DISTANCE_STRATEGY(Enum):
COSINE = "cosine"
EUCLIDEAN = "euclidean"
MAX_INNER_PRODUCT = "max_inner_product"
def __new__(cls, strategy_name: str):
obj = object.__new__(cls)
obj._value_ = strategy_name
return obj
@property
def strategy_name(self) -> str:
return self.value
DISTANCE_STRATEGIES = [
(
DISTANCE_STRATEGY.EUCLIDEAN,
"euclidean",
"<->",
"CREATE INDEX ON node USING ivfflat (embeddings vector_l2_ops) WITH (lists = 100);",
),
(
DISTANCE_STRATEGY.COSINE,
"cosine",
"<=>",
"CREATE INDEX ON node USING ivfflat (embeddings vector_cosine_ops) WITH (lists = 100);",
),
(
DISTANCE_STRATEGY.MAX_INNER_PRODUCT,
"max_inner_product",
"<#>",
"CREATE INDEX ON node USING ivfflat (embeddings vector_ip_ops) WITH (lists = 100);",
),
]
LLM_DEFAULT_DISTANCE_STRATEGY = DISTANCE_STRATEGY[
os.getenv("LLM_DEFAULT_DISTANCE_STRATEGY", "COSINE")
]
VECTOR_EMBEDDINGS_COUNT = 1536
PGVECTOR_ADD_INDEX = True if os.getenv("PGVECTOR_ADD_INDEX", False) else False
# Model constants
DOCUMENT_TYPE = IntEnum("DOCUMENT_TYPE", ["PLAINTEXT", "MARKDOWN", "HTML", "PDF"])
ENTITY_STATUS = IntEnum(
"ENTITY_STATUS",
["UNVERIFIED", "ACTIVE", "INACTIVE", "DELETED", "BANNED" "DEPRECATED"],
)
CHANNEL_TYPE = IntEnum(
"CHANNEL_TYPE", ["SMS", "TELEGRAM", "WHATSAPP", "EMAIL", "WEBSITE"]
)
AGENT_NAMES = [
"Aisha",
"Lilly",
"Hanna",
"Julia",
"Emily",
"Sophia",
"Alex",
"Isabella",
]
class LLM_MODELS(Enum):
TEXT_DAVINCI_003 = "text-davinci-003", 4097
GPT_35_TURBO = "gpt-3.5-turbo", 4096
TEXT_DAVINCI_002 = "text-davinci-002", 4097
CODE_DAVINCI_002 = "code-davinci-002", 8001
GPT_4 = "gpt-4", 8192
GPT_4_32K = "gpt-4-32k", 32768
def __init__(self, model_name, token_limit):
self._model_name = model_name
self._token_limit = token_limit
@property
def model_name(self) -> str:
return self._model_name
@property
def token_limit(self) -> int:
return self._token_limit
|