File size: 4,916 Bytes
0245be8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from enum import Enum, IntEnum
from dotenv import load_dotenv
from pathlib import Path
import logging
import sys
import os

# -------
# Logging
# -------

logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
logger = logging.getLogger(__name__)

# ----------------
# Environment vars
# ----------------
env = os.getenv("ENV", None)

if not env:
    # Check up to 2 levels up for .env-{env} file
    env_file = Path(__file__).parent.parent.parent / '.env'
    logger.debug(f"Loading env file: {env_file}")
    if os.path.exists(env_file):
        load_dotenv(dotenv_path=env_file)
    else:
        raise Exception(f"Env file {env})file not found")

# -----------------------
# Configuration constants
# -----------------------
readme_file = Path(__file__).parent / "API.md"

readme_str = (
    f"""
<details>
    <summary>πŸ“• API.MD</summary>
{readme_file.read_text()}

</details>

"""
    if readme_file.exists()
    else ""
)
APP_NAME = "API Documentation"
APP_VERSION = "0.0.1"
APP_DESCRIPTION = f"""
![img](/static/img/rasagpt-logo-1.png)

---
## About
πŸ’¬ RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain

- πŸ“š Resources: [https://rasagpt.dev](https://rasagpt.dev)
- πŸ§‘β€πŸ’» Github: [https://github.com/paulpierre/RasaGPT](https://github.com/paulpierre/RasaGPT)
- πŸ§™ Author: [@paulpierre](https://twitter.com/paulpierre)

{readme_str}
"""
APP_ICON = "/public/img/rasagpt-icon-200x200.png"
APP_LOGO = "/public/img/rasagpt-logo-1.png"

FILE_UPLOAD_PATH = os.getenv("FILE_UPLOAD_PATH", "/tmp")

# Database configurations
POSTGRES_USER = os.getenv("POSTGRES_USER", "postgres")
POSTGRES_PASSWORD = os.getenv("POSTGRES_PASSWORD", "postgres")
DB_HOST = os.getenv("DB_HOST", "localhost")
DB_PORT = os.getenv("DB_PORT", 5432)
DB_USER = os.getenv("DB_USER")
DB_NAME = os.getenv("DB_NAME")
DB_PASSWORD = os.getenv("DB_PASSWORD")
DSN = f"postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
SU_DSN = (
    f"postgresql://{POSTGRES_USER}:{POSTGRES_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}"
)

RASA_WEBHOOK_HOST = os.getenv("RASA_WEBHOOK_HOST", "rasa-core")
RASA_WEBHOOK_PORT = os.getenv("RASA_WEBHOOK_PORT", 5005)
RASA_WEBHOOK_URL = f"http://{RASA_WEBHOOK_HOST}:{RASA_WEBHOOK_PORT}"

# LLM configurations
MODEL_NAME = os.getenv("MODEL_NAME")
LLM_DEFAULT_TEMPERATURE = float(os.getenv("LLM_DEFAULT_TEMPERATURE", 0.0))
LLM_CHUNK_SIZE = int(os.getenv("LLM_CHUNK_SIZE", 512))
LLM_CHUNK_OVERLAP = int(os.getenv("LLM_CHUNK_OVERLAP", 20))
LLM_DISTANCE_THRESHOLD = float(os.getenv("LLM_DISTANCE_THRESHOLD", 0.5))
LLM_MAX_OUTPUT_TOKENS = int(os.getenv("LLM_MAX_OUTPUT_TOKENS", 256))
LLM_MIN_NODE_LIMIT = int(os.getenv("LLM_MIN_NODE_LIMIT", 3))


class DISTANCE_STRATEGY(Enum):
    COSINE = "cosine"
    EUCLIDEAN = "euclidean"
    MAX_INNER_PRODUCT = "max_inner_product"

    def __new__(cls, strategy_name: str):
        obj = object.__new__(cls)
        obj._value_ = strategy_name
        return obj

    @property
    def strategy_name(self) -> str:
        return self.value


DISTANCE_STRATEGIES = [
    (
        DISTANCE_STRATEGY.EUCLIDEAN,
        "euclidean",
        "<->",
        "CREATE INDEX ON node USING ivfflat (embeddings vector_l2_ops) WITH (lists = 100);",
    ),
    (
        DISTANCE_STRATEGY.COSINE,
        "cosine",
        "<=>",
        "CREATE INDEX ON node USING ivfflat (embeddings vector_cosine_ops) WITH (lists = 100);",
    ),
    (
        DISTANCE_STRATEGY.MAX_INNER_PRODUCT,
        "max_inner_product",
        "<#>",
        "CREATE INDEX ON node USING ivfflat (embeddings vector_ip_ops) WITH (lists = 100);",
    ),
]
LLM_DEFAULT_DISTANCE_STRATEGY = DISTANCE_STRATEGY[
    os.getenv("LLM_DEFAULT_DISTANCE_STRATEGY", "COSINE")
]
VECTOR_EMBEDDINGS_COUNT = 1536
PGVECTOR_ADD_INDEX = True if os.getenv("PGVECTOR_ADD_INDEX", False) else False
# Model constants

DOCUMENT_TYPE = IntEnum("DOCUMENT_TYPE", ["PLAINTEXT", "MARKDOWN", "HTML", "PDF"])

ENTITY_STATUS = IntEnum(
    "ENTITY_STATUS",
    ["UNVERIFIED", "ACTIVE", "INACTIVE", "DELETED", "BANNED" "DEPRECATED"],
)
CHANNEL_TYPE = IntEnum(
    "CHANNEL_TYPE", ["SMS", "TELEGRAM", "WHATSAPP", "EMAIL", "WEBSITE"]
)

AGENT_NAMES = [
    "Aisha",
    "Lilly",
    "Hanna",
    "Julia",
    "Emily",
    "Sophia",
    "Alex",
    "Isabella",
]


class LLM_MODELS(Enum):
    TEXT_DAVINCI_003 = "text-davinci-003", 4097
    GPT_35_TURBO = "gpt-3.5-turbo", 4096
    TEXT_DAVINCI_002 = "text-davinci-002", 4097
    CODE_DAVINCI_002 = "code-davinci-002", 8001
    GPT_4 = "gpt-4", 8192
    GPT_4_32K = "gpt-4-32k", 32768

    def __init__(self, model_name, token_limit):
        self._model_name = model_name
        self._token_limit = token_limit

    @property
    def model_name(self) -> str:
        return self._model_name

    @property
    def token_limit(self) -> int:
        return self._token_limit