Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from transformers import pipeline
|
|
5 |
import faiss
|
6 |
import numpy as np
|
7 |
|
|
|
8 |
def load_pdf_text(pdf_path):
|
9 |
reader = PdfReader(pdf_path)
|
10 |
text = ''
|
@@ -12,6 +13,7 @@ def load_pdf_text(pdf_path):
|
|
12 |
text += page.extract_text()
|
13 |
return text
|
14 |
|
|
|
15 |
def chunk_text(text, max_len=500):
|
16 |
sentences = text.split('. ')
|
17 |
chunks, chunk = [], ''
|
@@ -24,12 +26,14 @@ def chunk_text(text, max_len=500):
|
|
24 |
chunks.append(chunk.strip())
|
25 |
return chunks
|
26 |
|
|
|
27 |
@st.cache_resource
|
28 |
def embed_chunks(chunks):
|
29 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
30 |
embeddings = model.encode(chunks)
|
31 |
return embeddings, model
|
32 |
|
|
|
33 |
def answer_query(query, embeddings, chunks, model, qa_pipeline):
|
34 |
query_embedding = model.encode([query])
|
35 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
@@ -39,16 +43,31 @@ def answer_query(query, embeddings, chunks, model, qa_pipeline):
|
|
39 |
result = qa_pipeline(question=query, context=context)
|
40 |
return result['answer']
|
41 |
|
|
|
42 |
st.title("🤖 RAG PDF QA App")
|
43 |
st.markdown("Ask questions about the preloaded PDF dataset.")
|
44 |
|
|
|
45 |
pdf_path = "ml_dataset_25_pages.pdf"
|
46 |
raw_text = load_pdf_text(pdf_path)
|
47 |
chunks = chunk_text(raw_text)
|
48 |
embeddings, embedder = embed_chunks(chunks)
|
49 |
qa = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
if query:
|
53 |
answer = answer_query(query, embeddings, chunks, embedder, qa)
|
54 |
st.success(f"Answer: {answer}")
|
|
|
5 |
import faiss
|
6 |
import numpy as np
|
7 |
|
8 |
+
# Load and extract text from local PDF
|
9 |
def load_pdf_text(pdf_path):
|
10 |
reader = PdfReader(pdf_path)
|
11 |
text = ''
|
|
|
13 |
text += page.extract_text()
|
14 |
return text
|
15 |
|
16 |
+
# Split text into chunks
|
17 |
def chunk_text(text, max_len=500):
|
18 |
sentences = text.split('. ')
|
19 |
chunks, chunk = [], ''
|
|
|
26 |
chunks.append(chunk.strip())
|
27 |
return chunks
|
28 |
|
29 |
+
# Embed text using SentenceTransformer
|
30 |
@st.cache_resource
|
31 |
def embed_chunks(chunks):
|
32 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
33 |
embeddings = model.encode(chunks)
|
34 |
return embeddings, model
|
35 |
|
36 |
+
# RAG QA using FAISS index and QA pipeline
|
37 |
def answer_query(query, embeddings, chunks, model, qa_pipeline):
|
38 |
query_embedding = model.encode([query])
|
39 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
|
|
43 |
result = qa_pipeline(question=query, context=context)
|
44 |
return result['answer']
|
45 |
|
46 |
+
# Main app
|
47 |
st.title("🤖 RAG PDF QA App")
|
48 |
st.markdown("Ask questions about the preloaded PDF dataset.")
|
49 |
|
50 |
+
# Load and process the PDF
|
51 |
pdf_path = "ml_dataset_25_pages.pdf"
|
52 |
raw_text = load_pdf_text(pdf_path)
|
53 |
chunks = chunk_text(raw_text)
|
54 |
embeddings, embedder = embed_chunks(chunks)
|
55 |
qa = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
56 |
|
57 |
+
# Show sample questions
|
58 |
+
st.subheader("Ask a Question")
|
59 |
+
st.markdown("Here are some questions you can try:")
|
60 |
+
st.markdown("""
|
61 |
+
- What is supervised learning?
|
62 |
+
- Explain the difference between regression and classification.
|
63 |
+
- What are the applications of machine learning?
|
64 |
+
- How does decision tree algorithm work?
|
65 |
+
- What is overfitting in machine learning?
|
66 |
+
""")
|
67 |
+
|
68 |
+
# User input
|
69 |
+
query = st.text_input("Enter your question below:")
|
70 |
+
|
71 |
if query:
|
72 |
answer = answer_query(query, embeddings, chunks, embedder, qa)
|
73 |
st.success(f"Answer: {answer}")
|