Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import javalang
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import re
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
import warnings
|
8 |
+
import pandas as pd
|
9 |
+
import zipfile
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Set up page config
|
13 |
+
st.set_page_config(
|
14 |
+
page_title="Java Code Clone Detector (IJaDataset 2.1)",
|
15 |
+
page_icon="π",
|
16 |
+
layout="wide"
|
17 |
+
)
|
18 |
+
|
19 |
+
# Suppress warnings
|
20 |
+
warnings.filterwarnings("ignore")
|
21 |
+
|
22 |
+
# Constants
|
23 |
+
MODEL_NAME = "microsoft/codebert-base"
|
24 |
+
MAX_LENGTH = 512
|
25 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
+
DATASET_PATH = "ijadataset2-1.zip" # Update this path if needed
|
27 |
+
|
28 |
+
# Initialize models with caching
|
29 |
+
@st.cache_resource
|
30 |
+
def load_models():
|
31 |
+
try:
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
33 |
+
model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE)
|
34 |
+
return tokenizer, model
|
35 |
+
except Exception as e:
|
36 |
+
st.error(f"Failed to load models: {str(e)}")
|
37 |
+
return None, None
|
38 |
+
|
39 |
+
@st.cache_resource
|
40 |
+
def load_dataset():
|
41 |
+
try:
|
42 |
+
# Extract dataset if needed
|
43 |
+
if not os.path.exists("Diverse_100K_Dataset"):
|
44 |
+
with zipfile.ZipFile(DATASET_PATH, 'r') as zip_ref:
|
45 |
+
zip_ref.extractall(".")
|
46 |
+
|
47 |
+
# Load sample pairs (modify this based on your dataset structure)
|
48 |
+
clone_pairs = []
|
49 |
+
base_path = "Diverse_100K_Dataset/Subject_CloneTypes_Directories"
|
50 |
+
|
51 |
+
# Example: Load one pair from each clone type
|
52 |
+
for clone_type in ["Clone_Type1", "Clone_Type2", "Clone_Type3 - ST"]:
|
53 |
+
type_path = os.path.join(base_path, clone_type)
|
54 |
+
if os.path.exists(type_path):
|
55 |
+
for root, _, files in os.walk(type_path):
|
56 |
+
if files:
|
57 |
+
# Take first two files as a pair
|
58 |
+
if len(files) >= 2:
|
59 |
+
with open(os.path.join(root, files[0]), 'r', encoding='utf-8') as f1:
|
60 |
+
code1 = f1.read()
|
61 |
+
with open(os.path.join(root, files[1]), 'r', encoding='utf-8') as f2:
|
62 |
+
code2 = f2.read()
|
63 |
+
clone_pairs.append({
|
64 |
+
"type": clone_type,
|
65 |
+
"code1": code1,
|
66 |
+
"code2": code2
|
67 |
+
})
|
68 |
+
break # Just take one pair per type for demo
|
69 |
+
|
70 |
+
return clone_pairs[:10] # Return first 10 pairs for demo
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
st.error(f"Error loading dataset: {str(e)}")
|
74 |
+
return []
|
75 |
+
|
76 |
+
tokenizer, code_model = load_models()
|
77 |
+
dataset_pairs = load_dataset()
|
78 |
+
|
79 |
+
# Normalization function
|
80 |
+
def normalize_code(code):
|
81 |
+
try:
|
82 |
+
code = re.sub(r'//.*', '', code) # Remove single-line comments
|
83 |
+
code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL) # Multi-line comments
|
84 |
+
code = re.sub(r'\s+', ' ', code).strip() # Normalize whitespace
|
85 |
+
return code
|
86 |
+
except Exception:
|
87 |
+
return code
|
88 |
+
|
89 |
+
# Embedding generation
|
90 |
+
def get_embedding(code):
|
91 |
+
try:
|
92 |
+
code = normalize_code(code)
|
93 |
+
inputs = tokenizer(
|
94 |
+
code,
|
95 |
+
return_tensors="pt",
|
96 |
+
truncation=True,
|
97 |
+
max_length=MAX_LENGTH,
|
98 |
+
padding='max_length'
|
99 |
+
).to(DEVICE)
|
100 |
+
|
101 |
+
with torch.no_grad():
|
102 |
+
outputs = code_model(**inputs)
|
103 |
+
|
104 |
+
return outputs.last_hidden_state.mean(dim=1) # Pooled embedding
|
105 |
+
except Exception as e:
|
106 |
+
st.error(f"Error processing code: {str(e)}")
|
107 |
+
return None
|
108 |
+
|
109 |
+
# Comparison function
|
110 |
+
def compare_code(code1, code2):
|
111 |
+
if not code1 or not code2:
|
112 |
+
return None
|
113 |
+
|
114 |
+
with st.spinner('Analyzing code...'):
|
115 |
+
emb1 = get_embedding(code1)
|
116 |
+
emb2 = get_embedding(code2)
|
117 |
+
|
118 |
+
if emb1 is None or emb2 is None:
|
119 |
+
return None
|
120 |
+
|
121 |
+
with torch.no_grad():
|
122 |
+
similarity = F.cosine_similarity(emb1, emb2).item()
|
123 |
+
|
124 |
+
return similarity
|
125 |
+
|
126 |
+
# UI Elements
|
127 |
+
st.title("π Java Code Clone Detector (IJaDataset 2.1)")
|
128 |
+
st.markdown("""
|
129 |
+
Compare Java code snippets from the IJaDataset 2.1 using CodeBERT embeddings.
|
130 |
+
""")
|
131 |
+
|
132 |
+
# Dataset selector
|
133 |
+
selected_pair = None
|
134 |
+
if dataset_pairs:
|
135 |
+
pair_options = {f"{i+1}: {pair['type']}": pair for i, pair in enumerate(dataset_pairs)}
|
136 |
+
selected_option = st.selectbox("Select a preloaded example pair:", list(pair_options.keys()))
|
137 |
+
selected_pair = pair_options[selected_option]
|
138 |
+
|
139 |
+
# Layout
|
140 |
+
col1, col2 = st.columns(2)
|
141 |
+
|
142 |
+
with col1:
|
143 |
+
code1 = st.text_area(
|
144 |
+
"First Java Code",
|
145 |
+
height=300,
|
146 |
+
value=selected_pair["code1"] if selected_pair else "",
|
147 |
+
help="Enter the first Java code snippet"
|
148 |
+
)
|
149 |
+
|
150 |
+
with col2:
|
151 |
+
code2 = st.text_area(
|
152 |
+
"Second Java Code",
|
153 |
+
height=300,
|
154 |
+
value=selected_pair["code2"] if selected_pair else "",
|
155 |
+
help="Enter the second Java code snippet"
|
156 |
+
)
|
157 |
+
|
158 |
+
# Threshold slider
|
159 |
+
threshold = st.slider(
|
160 |
+
"Clone Detection Threshold",
|
161 |
+
min_value=0.5,
|
162 |
+
max_value=1.0,
|
163 |
+
value=0.85,
|
164 |
+
step=0.01,
|
165 |
+
help="Adjust the similarity threshold for clone detection"
|
166 |
+
)
|
167 |
+
|
168 |
+
# Compare button
|
169 |
+
if st.button("Compare Code", type="primary"):
|
170 |
+
if tokenizer is None or code_model is None:
|
171 |
+
st.error("Models failed to load. Please check the logs.")
|
172 |
+
else:
|
173 |
+
similarity = compare_code(code1, code2)
|
174 |
+
|
175 |
+
if similarity is not None:
|
176 |
+
# Display results
|
177 |
+
st.subheader("Results")
|
178 |
+
|
179 |
+
# Progress bar for visualization
|
180 |
+
st.progress(similarity)
|
181 |
+
|
182 |
+
# Metrics columns
|
183 |
+
col1, col2, col3 = st.columns(3)
|
184 |
+
|
185 |
+
with col1:
|
186 |
+
st.metric("Similarity Score", f"{similarity:.3f}")
|
187 |
+
|
188 |
+
with col2:
|
189 |
+
st.metric("Threshold", f"{threshold:.3f}")
|
190 |
+
|
191 |
+
with col3:
|
192 |
+
is_clone = similarity >= threshold
|
193 |
+
st.metric(
|
194 |
+
"Clone Detection",
|
195 |
+
"β
Clone" if is_clone else "β Not a Clone",
|
196 |
+
delta=f"{similarity-threshold:+.3f}"
|
197 |
+
)
|
198 |
+
|
199 |
+
# Show normalized code for debugging
|
200 |
+
with st.expander("Show normalized code"):
|
201 |
+
tab1, tab2 = st.tabs(["First Code", "Second Code"])
|
202 |
+
|
203 |
+
with tab1:
|
204 |
+
st.code(normalize_code(code1))
|
205 |
+
|
206 |
+
with tab2:
|
207 |
+
st.code(normalize_code(code2))
|
208 |
+
|
209 |
+
# Footer
|
210 |
+
st.markdown("---")
|
211 |
+
st.markdown("""
|
212 |
+
**Dataset Information**:
|
213 |
+
- Using IJaDataset 2.1 from Kaggle
|
214 |
+
- Contains 100K Java files with clone annotations
|
215 |
+
- Clone types: Type-1, Type-2, and Type-3 clones
|
216 |
+
""")
|