Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,91 @@
|
|
1 |
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import faiss
|
5 |
-
import os
|
6 |
-
import zipfile
|
7 |
from langdetect import detect
|
|
|
|
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
st.set_page_config(page_title="Multilingual RAG Translator/Answer Bot", layout="wide")
|
13 |
-
|
14 |
-
st.title("π Multilingual RAG Translator/Answer Bot")
|
15 |
-
st.markdown("Ask in Urdu, French, Hindi, etc., and get culturally-aware, context-grounded answers.")
|
16 |
-
|
17 |
-
# --- ZIP extraction ---
|
18 |
-
zip_file = "all_languages_test.csv.zip"
|
19 |
-
csv_file = "all_languages_test.csv"
|
20 |
-
|
21 |
-
if not os.path.exists(csv_file):
|
22 |
-
with zipfile.ZipFile(zip_file, "r") as zip_ref:
|
23 |
-
zip_ref.extractall()
|
24 |
-
|
25 |
-
# --- Language map and translation model ---
|
26 |
-
lang_map = {
|
27 |
-
"en": "en_XX", "fr": "fr_XX", "ur": "ur_PK", "hi": "hi_IN",
|
28 |
-
"es": "es_XX", "de": "de_DE", "zh-cn": "zh_CN", "ar": "ar_AR"
|
29 |
-
}
|
30 |
|
31 |
@st.cache_resource
|
32 |
def load_resources():
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
|
|
44 |
|
45 |
-
|
|
|
|
|
|
|
46 |
|
47 |
return embedder, index, corpus, tokenizer, model
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
-
tokenizer.src_lang = token_lang
|
63 |
-
encoded_input = tokenizer(full_input, return_tensors="pt")
|
64 |
generated_tokens = model.generate(
|
65 |
-
**
|
66 |
-
forced_bos_token_id=tokenizer.lang_code_to_id[
|
|
|
|
|
|
|
67 |
)
|
68 |
-
|
69 |
return tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
if
|
75 |
-
if
|
76 |
-
|
77 |
-
response = generate_answer(user_input)
|
78 |
-
st.success("Answer:")
|
79 |
-
st.write(response)
|
80 |
else:
|
81 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
from langdetect import detect
|
3 |
+
import faiss
|
4 |
+
import torch
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import os
|
10 |
|
11 |
+
st.set_page_config(page_title="π Multilingual RAG Translator/Answer Bot", layout="centered")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
@st.cache_resource
|
14 |
def load_resources():
|
15 |
+
embedder = SentenceTransformer("sentence-transformers/distiluse-base-multilingual-cased-v1")
|
16 |
+
tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
17 |
+
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
18 |
|
19 |
+
# Load multilingual dataset CSV
|
20 |
+
df = pd.read_csv("all_languages_test.csv")
|
21 |
|
22 |
+
# Construct corpus
|
23 |
+
corpus = (df["premise"] + " " + df["hypothesis"]).fillna("").tolist()
|
24 |
|
25 |
+
# Compute embeddings for corpus
|
26 |
+
corpus_embeddings = embedder.encode(corpus, convert_to_numpy=True, show_progress_bar=True)
|
27 |
|
28 |
+
# Create FAISS index
|
29 |
+
dimension = corpus_embeddings.shape[1]
|
30 |
+
index = faiss.IndexFlatL2(dimension)
|
31 |
+
index.add(corpus_embeddings)
|
32 |
|
33 |
return embedder, index, corpus, tokenizer, model
|
34 |
|
35 |
+
def detect_lang(text):
|
36 |
+
try:
|
37 |
+
return detect(text)
|
38 |
+
except:
|
39 |
+
return "en"
|
40 |
|
41 |
+
def get_top_k_passages(query, embedder, index, corpus, k=3):
|
42 |
+
query_embedding = embedder.encode([query], convert_to_numpy=True)
|
43 |
+
distances, indices = index.search(query_embedding, k)
|
44 |
+
return [corpus[i] for i in indices[0] if i < len(corpus)]
|
45 |
|
46 |
+
def generate_answer(query, context, tokenizer, model, src_lang):
|
47 |
+
model.eval()
|
48 |
+
tokenizer.src_lang = src_lang
|
49 |
+
joined_context = " ".join(context)
|
50 |
|
51 |
+
inputs = tokenizer(query + " " + joined_context, return_tensors="pt", max_length=1024, truncation=True)
|
|
|
|
|
52 |
generated_tokens = model.generate(
|
53 |
+
**inputs,
|
54 |
+
forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"],
|
55 |
+
max_length=256,
|
56 |
+
num_beams=5,
|
57 |
+
early_stopping=True
|
58 |
)
|
|
|
59 |
return tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
60 |
|
61 |
+
st.title("π Multilingual RAG Translator/Answer Bot")
|
62 |
+
st.caption("Ask in Urdu, French, Hindi, etc., and get culturally-aware, context-grounded answers.")
|
63 |
+
|
64 |
+
query = st.text_input("π¬ Enter your question in any supported language:")
|
65 |
|
66 |
+
if query:
|
67 |
+
if len(query.strip()) < 3:
|
68 |
+
st.warning("Please enter a more complete question for better results.")
|
|
|
|
|
|
|
69 |
else:
|
70 |
+
with st.spinner("Thinking..."):
|
71 |
+
embedder, index, corpus, tokenizer, model = load_resources()
|
72 |
+
lang = detect_lang(query)
|
73 |
+
|
74 |
+
lang_map = {
|
75 |
+
"en": "en_XX", "fr": "fr_XX", "ur": "ur_PK", "hi": "hi_IN",
|
76 |
+
"es": "es_XX", "de": "de_DE", "zh": "zh_CN", "ar": "ar_AR",
|
77 |
+
"ru": "ru_RU", "tr": "tr_TR", "it": "it_IT", "pt": "pt_XX",
|
78 |
+
}
|
79 |
+
|
80 |
+
src_lang = lang_map.get(lang, "en_XX")
|
81 |
+
context = get_top_k_passages(query, embedder, index, corpus)
|
82 |
+
|
83 |
+
if not context:
|
84 |
+
st.error("β οΈ Could not find any relevant context to answer your question.")
|
85 |
+
else:
|
86 |
+
try:
|
87 |
+
answer = generate_answer(query, context, tokenizer, model, src_lang)
|
88 |
+
st.markdown("### π Answer:")
|
89 |
+
st.success(answer)
|
90 |
+
except Exception as e:
|
91 |
+
st.error(f"β οΈ Something went wrong while generating the answer.\n\n{e}")
|