from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from sentence_transformers import SentenceTransformer import numpy as np import faiss from datasets import load_dataset # Load Dataset dataset = load_dataset("pubmed_qa", "pqa_labeled") corpus = [entry['context'] for entry in dataset['train']] # Embedding model embed_model = SentenceTransformer('pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb') corpus_embeddings = embed_model.encode(corpus, show_progress_bar=True) # FAISS index index = faiss.IndexFlatL2(len(corpus_embeddings[0])) index.add(np.array(corpus_embeddings)) # Generator model tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large") # Generate Answer Function def generate_answer(query, index, embeddings, corpus, embed_model): query_embedding = embed_model.encode([query]) D, I = index.search(np.array(query_embedding), k=5) retrieved = [corpus[i] for i in I[0]] prompt = f"Context: {retrieved}\n\nQuestion: {query}\n\nAnswer:" inputs = tokenizer(prompt, return_tensors="pt", truncation=True) outputs = model.generate(**inputs, max_new_tokens=128) return tokenizer.decode(outputs[0], skip_special_tokens=True)