Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,35 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
st.
|
36 |
-
return
|
37 |
-
|
38 |
-
# Initialize RAG model components
|
39 |
-
tokenizer, retriever, model = initialize_rag()
|
40 |
-
if tokenizer is None or retriever is None or model is None:
|
41 |
-
st.write("RAG components could not be initialized.")
|
42 |
-
return
|
43 |
-
|
44 |
-
# UI to input a query
|
45 |
-
query = st.text_input("Enter your question in Urdu, Hindi, or French:")
|
46 |
-
|
47 |
-
if query:
|
48 |
-
# Tokenize the input query
|
49 |
-
inputs = tokenizer(query, return_tensors="pt")
|
50 |
-
|
51 |
-
# Retrieve relevant documents
|
52 |
-
retrieved_docs = retriever.retrieve(query)
|
53 |
-
# Generate an answer using the model
|
54 |
-
generated = model.generate(input_ids=inputs['input_ids'], context_input_ids=retrieved_docs['input_ids'])
|
55 |
-
answer = tokenizer.decode(generated[0], skip_special_tokens=True)
|
56 |
-
|
57 |
-
st.write("Answer:", answer)
|
58 |
-
|
59 |
-
# Run the Streamlit app
|
60 |
-
if __name__ == "__main__":
|
61 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import groq
|
4 |
+
|
5 |
+
# Initialize Groq API
|
6 |
+
groq_client = groq.Client()
|
7 |
+
|
8 |
+
# Initialize the zero-shot classification pipeline from Hugging Face
|
9 |
+
classifier = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli")
|
10 |
+
|
11 |
+
# Function to perform zero-shot classification
|
12 |
+
def classify_text(sequence, candidate_labels):
|
13 |
+
result = classifier(sequence, candidate_labels)
|
14 |
+
return result
|
15 |
+
|
16 |
+
# Streamlit UI elements
|
17 |
+
st.title("Zero-Shot Text Classification with XLM-RoBERTa")
|
18 |
+
st.markdown("Enter a text and select candidate labels for classification.")
|
19 |
+
|
20 |
+
# Text input from the user
|
21 |
+
sequence = st.text_area("Enter text to classify", "", height=150)
|
22 |
+
|
23 |
+
# Candidate labels
|
24 |
+
candidate_labels = st.text_input("Enter candidate labels (comma separated)", "politics, health, education")
|
25 |
+
candidate_labels = [label.strip() for label in candidate_labels.split(",")]
|
26 |
+
|
27 |
+
# When the classify button is pressed
|
28 |
+
if st.button("Classify Text"):
|
29 |
+
if sequence:
|
30 |
+
result = classify_text(sequence, candidate_labels)
|
31 |
+
st.write("Classification Results:")
|
32 |
+
st.write(f"Labels: {result['labels']}")
|
33 |
+
st.write(f"Scores: {result['scores']}")
|
34 |
+
else:
|
35 |
+
st.error("Please enter text to classify.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|