File size: 23,746 Bytes
2ef9917 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
import gradio as gr
import tempfile
from weaviate.client import Client
import weaviate
import time
import pandas as pd
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
import tempfile
from sentence_transformers import SentenceTransformer
############################
### Variable Declaration ###
############################
# -- Global Variables
g_product_details={}
g_client=None
g_weaviate_url=""
g_ui_model_name=""
def update_global_variables(ui_action_dropdown, ui_model_name,ui_weaviate_url,ui_chatbot,ui_download_excel, ui_upload_excel):
global g_ui_model_name
global g_weaviate_url
# Reset values to defaults
g_ui_model_name=""
g_weaviate_url=""
ui_product_dropdown=gr.Dropdown.update(
interactive=False
)
ui_download_excel = gr.File.update(
visible=False,
interactive=False
)
ui_upload_excel = gr.UploadButton.update(
visible=False
)
ui_chatbot.clear()
# Loading global variables
ui_chatbot.append((None,"Loading Parameters, API Key & Weaviate URL"))
try:
# Validation for Model Details
if ui_model_name != "":
print('Setting g_ui_model_name - '+ui_model_name)
g_ui_model_name=ui_model_name
ui_chatbot.append((None,"Updated SBert Model"))
else:
print("exception in function - update_global_variables")
raise ValueError('Required Sbert Model Name')
# Validation for Weaviate URL
if ui_weaviate_url != "":
print('Setting g_weaviate_url - '+ui_weaviate_url)
g_weaviate_url=ui_weaviate_url
weaviate_client()
ui_chatbot.append((None,"Updated Weaviate URL"))
# Load Product Details
update_products_variable()
ui_product_dropdown = update_products_lov()
else:
print('Required Weaviate URL')
ui_chatbot.append((None,"<b style='color:red'>Required Weaviate URL</b>"))
# If Action = Query, Enable ui_download_excel
if ui_action_dropdown == "Query":
ui_upload_excel = gr.UploadButton.update(
visible=True,
interactive=True
)
except Exception as e:
print('Exception in loading parameters - '+str(e))
ui_chatbot.append((None,"<b style='color:red'>Exception "+str(e)+"</b>"))
raise ValueError(str(e))
finally:
return ui_chatbot,ui_product_dropdown,ui_download_excel, ui_upload_excel
############################
###### Generic Code #######
############################
# -- Generate Mapping HTML Table
def convert_mapping_data_to_html_table(table_data):
html_table = f"""
<table style="border-collapse: collapse; width: 100%;">
<tr>
<th style="border: 1px solid black; text-align: center; padding: 8px;">Input</th>
<th style="border: 1px solid black; text-align: center; padding: 8px;">Key</th>
<th style="border: 1px solid black; text-align: center; padding: 8px;">Description</th>
<th style="border: 1px solid black; text-align: center; padding: 8px;">Certainty</th>
</tr>
<tr>
<td style="border: 1px solid black; text-align: center; padding: 8px;">{table_data['input']}</td>
<td style="border: 1px solid black; text-align: center; padding: 8px;">{table_data['key']}</td>
<td style="border: 1px solid black; text-align: center; padding: 8px;">{table_data['description']}</td>
<td style="border: 1px solid black; text-align: center; padding: 8px;">{table_data['certainty']}</td>
</tr>
</table><br><br>
"""
return html_table
# -- Generate Object Search HTML Table
def convert_object_id_data_to_html_table(table_data_items):
html_table=""
for table_data in table_data_items:
html_table += f"""
<table style="border-collapse: collapse; width: 100%;">
<tr>
<th style="border: 1px solid black; text-align: center; padding: 8px;">Object ID</th>
<th style="border: 1px solid black; text-align: center; padding: 8px;">Key</th>
<th style="border: 1px solid black; text-align: center; padding: 8px;">Description</th>
</tr>
<tr>
<td style="border: 1px solid black; text-align: center; padding: 8px;">{table_data['id']}</td>
<td style="border: 1px solid black; text-align: center; padding: 8px;">{table_data['key']}</td>
<td style="border: 1px solid black; text-align: center; padding: 8px;">{table_data['description']}</td>
</tr>
</table><br>
"""
# print(html_table)
return html_table
# -- Create Weaviate Connection
def weaviate_client():
global g_client
global g_weaviate_url
try:
g_client = Client(url=g_weaviate_url, timeout_config=(3.05, 9.1))
print("Weaviate client connected successfully!")
except Exception as e:
print("Failed to connect to the Weaviate instance."+str(e))
raise ValueError('Failed to connect to the Weaviate instance.')
# -- Convert input to CamelCase
def convert_to_camel_case(string):
words = string.split('_')
camel_case_words = [word.capitalize() for word in words]
return ''.join(camel_case_words)
# -- Create Sbert Embedding
def creating_embeddings(sentences):
global g_ui_model_name
# print("Creating embedding for text"+ sentences)
# Create OpenAI embeddings
model = SentenceTransformer(g_ui_model_name)
embeddings = model.encode(sentences)
# for sentence, embedding in zip(sentences, embeddings):
# print(embedding) # numpy.ndarray
# print(embeddings.shape)
return embeddings
############################
## Update Product Details ##
############################
# -- Update Product LOV
def update_products_lov():
global g_product_details
print("started function - update_products_lov")
product_details = [d["name"] for d in g_product_details]
ui_product_dropdown = gr.Dropdown.update(
choices=product_details,
value=product_details[0],
interactive=True
)
print("completed function - update_products_lov")
return ui_product_dropdown
# -- Get Product global variable
def update_products_variable():
global g_client
global g_product_details
print("started function - update_products_variable")
try:
api_response = g_client.query.get("Product", ["name","description"]).do()
print("Product API Response")
print(api_response)
g_product_details = api_response['data']['Get']['Product']
product_details = [d["name"] for d in g_product_details]
print("Product API Response")
print(product_details)
except Exception as e:
print("Error getting Product Details")
finally:
print("completed function - update_products_variable")
############################
#### Search User Manual ####
############################
def search_um(ui_search_text, ui_product_dropdown):
global g_client
um_data = "No results from User Manual"
print("started function - search_um")
print("Product Selected -->"+ui_product_dropdown)
try:
if ui_product_dropdown:
input_embedding=creating_embeddings(ui_search_text)
vector = {"vector": input_embedding}
response = g_client \
.query.get(convert_to_camel_case(ui_product_dropdown+"_um"), ["content", "_additional {certainty}"]) \
.with_near_vector(vector) \
.with_limit(1) \
.do()
# print(result)
if response:
result = response['data']['Get'][convert_to_camel_case(ui_product_dropdown+"_um")][0]['content']
result_value = result.split('\nResult : ')[0]
um_data = result_value
else:
um_data = "Please select product name to proceed"
return um_data
except Exception as e:
raise ValueError(str(e))
finally:
print("completed function - search_um")
############################
#### Search Mapping Data ###
############################
def search_mapping_data(ui_search_text, ui_product_dropdown):
global g_client
print("started function - search_mapping_data")
print("Product Selected -->"+ui_product_dropdown)
try:
print("Performing Semantic Search")
if ui_product_dropdown:
input_embedding=creating_embeddings(ui_search_text)
where_product_name = convert_to_camel_case(ui_product_dropdown+"_mapping")
vector = {"vector": input_embedding}
response = g_client \
.query.get(where_product_name, ["key","description", "_additional {certainty}"]) \
.with_near_vector(vector) \
.with_limit(1) \
.do()
# print(result)
if response:
mapping = response['data']['Get'].get(convert_to_camel_case(ui_product_dropdown+"_mapping"))
if mapping:
for item in mapping:
key = item['key']
description = item['description']
certainty = item['_additional']['certainty']
print("Key:", key)
print("Description:", description)
print("Certainty:", certainty)
return {
'input': ui_search_text,
'key':key,
'description': description,
'certainty': certainty
}
else:
print("Mapping has no data.")
return {
'input': ui_search_text,
'key': None,
'description': None,
'certainty': None
}
except Exception as e:
raise ValueError(str(e))
finally:
print("completed function - search_mapping_data")
def search_and_get_object_id_by_key(ui_search_text, ui_product_dropdown):
global g_client
items=[]
print("started function - search_and_get_object_id_by_key")
print("Product Selected -->"+ui_product_dropdown)
try:
print("Performing Normal Search")
if ui_product_dropdown:
product_name = convert_to_camel_case(ui_product_dropdown+"_mapping")
where_filter = {
"path": ["key"],
"operator": "Equal",
"valueString": ui_search_text
}
response = (
g_client.query
.get(product_name, ["key","description"])
.with_where(where_filter)
.with_limit(5)
.with_additional(["id"])
.do()
)
print(response)
if response:
mapping = response['data']['Get'].get(product_name)
if mapping:
for item in mapping:
id = item['_additional']['id']
key = item['key']
description = item['description']
print("Id:", id)
print("Key:", key)
print("Description:", description)
item = {
'input': ui_search_text,
'id': id,
'key':key,
'description': description
}
items.append(item)
print("Added Item")
else:
print("Mapping has no data.")
item= {
'input': ui_search_text,
'id': None,
'key': None,
'description': None
}
items.append(item)
except Exception as e:
print("Error - "+str(e))
raise ValueError(str(e))
finally:
print("completed function - search_and_get_object_id_by_key")
return items
############################
#### Update Mapping Data ###
############################
def update_mapping_by_object_id(ui_search_text, ui_product_dropdown):
global g_client
print("started function - update_mapping_by_object_id")
try:
object_id, description = ui_search_text.split(", ")
embedding = creating_embeddings(description)
product_name = convert_to_camel_case(ui_product_dropdown+"_mapping")
data_object = {
"description": description
}
g_client \
.data_object \
.update(
data_object,
class_name=product_name,
uuid=object_id,
consistency_level=weaviate.data.replication.ConsistencyLevel.ALL,
vector=embedding
)
except Exception as e:
print("Update Error - "+str(e))
raise ValueError(str(e))
finally:
print("completed function - update_mapping_by_object_id")
############################
#### Delete Mapping Data ###
############################
def delete_mapping_by_object_id(ui_search_text, ui_product_dropdown):
global g_client
print("completed function - delete_mapping_by_object_id")
try:
product_name = convert_to_camel_case(ui_product_dropdown+"_mapping")
g_client. \
data_object.delete(
ui_search_text,
class_name=product_name,
consistency_level=weaviate.data.replication.ConsistencyLevel.ALL
)
except Exception as e:
print("Delete Error - "+str(e))
raise ValueError(str(e))
finally:
print("completed function - delete_mapping_by_object_id")
############################
##### Search User Input ####
############################
def text_search(ui_action_dropdown, ui_product_dropdown, ui_search_text, ui_chatbot):
print("started function - text_search")
try:
if ui_action_dropdown == 'Query':
print("Starting to Query")
ui_chatbot.append(("Searching: "+ ui_search_text,None))
um_search_results = search_um(ui_search_text, ui_product_dropdown)
mapping_search_results = search_mapping_data(ui_search_text, ui_product_dropdown)
ui_chatbot.append((None,"<b style='color:green'>Mapping Results: </b><br>"+convert_mapping_data_to_html_table(mapping_search_results)+"<b style='color:green'>User Manual Search Results: </b><br>"+um_search_results))
elif ui_action_dropdown == 'Get Object ID':
print("Starting to Query Object ID")
ui_chatbot.append(("Searching Object ID: "+ ui_search_text,None))
search_results = search_and_get_object_id_by_key(ui_search_text, ui_product_dropdown)
ui_chatbot.append((None,"<b style='color:green'>Object ID Results: </b><br>"+convert_object_id_data_to_html_table(search_results)))
elif ui_action_dropdown == 'Update':
print("Starting to Update")
ui_chatbot.append(("Updating: "+ ui_search_text,None))
update_mapping_by_object_id(ui_search_text, ui_product_dropdown)
elif ui_action_dropdown == 'Delete':
print("Starting to Delete")
ui_chatbot.append(("Deleting: "+ ui_search_text,None))
delete_mapping_by_object_id(ui_search_text, ui_product_dropdown)
except Exception as e:
print('Exception '+str(e))
ui_chatbot.append((None,"<b style='color:red'>Exception "+str(e)+"</b>"))
finally:
print("completed function - text_search")
return ui_chatbot
############################
##### Upload User Input ####
############################
def excel_file_search(ui_product_dropdown, ui_excel_upload, ui_chatbot):
print("started function - excel_file_search")
# Create an empty list to store the items
items=[]
output_file_path=""
try:
file_path = ui_excel_upload.name
print("Uploaded xlsx location - "+file_path)
# Read the Excel file
xls = pd.ExcelFile(file_path)
# Iterate over each sheet in the Excel file
for sheet_name in xls.sheet_names:
# Read the sheet into a DataFrame
df = pd.read_excel(xls, sheet_name=sheet_name)
# Iterate over each input value in the 'Input' column
for input_value in df['Input']:
# Create mapping search for each input
mapping_search_results = search_mapping_data(input_value, ui_product_dropdown)
# Create a dictionary item for the sheet
item = {
'sheet': sheet_name,
'input': input_value,
'key': mapping_search_results['key'],
'description': mapping_search_results['description'],
'certainty': mapping_search_results['certainty']
}
print('key: ' + item['key'])
print('sheet: ' + item['sheet'])
print('input: ' + item['input'])
print('description: ' + item['description'])
print('certainty: ' + str(item['certainty']))
# Append the item to the list
items.append(item)
# Creating xlsx file
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.xlsx', newline='\n') as temp_file:
# Create a Pandas DataFrame from the items list
df_items = pd.DataFrame(items)
# Create a new Workbook object
workbook = Workbook()
# Iterate over each sheet in the DataFrame
for sheet_name in df_items['sheet'].unique():
# Filter the DataFrame for the current sheet
df_sheet = df_items[df_items['sheet'] == sheet_name]
# Select only the 'key', 'description', and 'certainty' columns
df_sheet = df_sheet[['input','key', 'description', 'certainty']]
# Create a new sheet in the workbook
sheet = workbook.create_sheet(title=sheet_name)
# Write the DataFrame to the sheet
for row in dataframe_to_rows(df_sheet, index=False, header=True):
sheet.append(row)
# Remove the default sheet created by openpyxl
del workbook["Sheet"]
# Save the Excel file
workbook.save(temp_file.name)
print("File Processing Completed - "+str(temp_file.name))
output_file_path=gr.File.update( visible=True,
value=str(temp_file.name),
interactive=True
)
ui_chatbot.append((None, "File Processing Completed - "+str(temp_file.name)))
except Exception as e:
print('Exception '+str(e))
ui_chatbot.append((None,"<b style='color:red'>Exception "+str(e)+"</b>"))
finally:
print("completed function - excel_file_search")
return ui_chatbot, output_file_path
############################
####### Main Program #######
############################
# -- Start of Program - Main
def main():
print("\nStarted Knowledge Base Chat Application")
with gr.Blocks() as demo:
with gr.Accordion("Settings"):
ui_model_name=gr.Textbox(placeholder="Semantic Search Model, https://www.sbert.net/docs/pretrained_models.html#semantic-search",label="Semantic Search Model")
ui_weaviate_url=gr.Textbox(placeholder="Weaviate URL, https://weaviate.xxx",label="Weaviate URL", type="password")
ui_chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
with gr.Row():
with gr.Column(scale=0.2, min_width=0):
ui_action_dropdown = gr.Dropdown(
["Query","Update","Delete","Get Object ID"],
label="Action Type"
)
with gr.Column(scale=0.2, min_width=0):
ui_product_dropdown = gr.Dropdown(
[],
interactive=False,
label="Select Product"
)
with gr.Column(scale=0.6):
ui_search_text = gr.Textbox(
show_label=False,
# lines=3.2,
placeholder="Message me, I am your migration assistance",
)
ui_upload_excel = gr.UploadButton("Upload Mapping File", file_types=["*.xlsx"])
ui_download_excel = gr.File(label="Download Recommendations", interactive=False, visible=False)
# Loading global variables
ui_action_dropdown.change(
fn=update_global_variables,
inputs=[ui_action_dropdown, ui_model_name,ui_weaviate_url,ui_chatbot,ui_download_excel, ui_upload_excel],
outputs=[ui_chatbot,ui_product_dropdown,ui_download_excel, ui_upload_excel]
)
try:
# Search Text
ui_search_text.submit(fn=text_search,
inputs=[ui_action_dropdown, ui_product_dropdown, ui_search_text, ui_chatbot],
outputs=[ui_chatbot]
)
except Exception as e:
ui_chatbot.append((None,"<b style='color:red'>Exception Searching "+str(e)+"</b>"))
try:
# Upload Mapping
ui_upload_excel.upload(fn=excel_file_search,
inputs=[ui_product_dropdown, ui_upload_excel, ui_chatbot],
outputs=[ui_chatbot,ui_download_excel]
)
except Exception as e:
ui_chatbot.append((None,"<b style='color:red'>Exception Searching Excel "+str(e)+"</b>"))
demo.launch(server_name="0.0.0.0",server_port=8080)
# -- Calling Main Function
if __name__ == '__main__':
main() |