Spaces:
Running
Running
RaghadAbdulaziz
commited on
Commit
·
fa9d1d9
1
Parent(s):
be12119
app.py
CHANGED
@@ -1,56 +1,78 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
|
5 |
-
# ====================== 1) Load
|
6 |
-
model_name = "
|
7 |
-
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
model_name,
|
11 |
device_map="auto",
|
12 |
-
torch_dtype=torch.float16
|
|
|
|
|
13 |
)
|
14 |
|
15 |
-
# ====================== 2)
|
16 |
allowed_keywords = [
|
|
|
17 |
"palm", "palms", "نخلة", "نخل", "نخلي", "فسيلة", "فسائل", "جذع", "سعف", "خوص", "جريد", "شماريخ", "عذوق", "مزرعة نخل", "offshoot", "date palm",
|
|
|
18 |
"مرض النخيل", "ذبول", "لفحة", "اللفحة السوداء", "فطريات", "قمل أبيض", "ذبول الفيوزاريم", "تبقعات الأوراق", "نقص المغنيسيوم", "نقص البوتاسيوم", "اصفرار الخوص", "احتراق الجريد", "الثمر ما يكتمل",
|
19 |
"Black scorch", "Fusarium wilt", "Rachis blight", "Leaf spot", "Mites", "Insects", "White bugs", "Parlatoria", "Magnesium deficiency", "Potassium deficiency", "Manganese deficiency",
|
|
|
20 |
"تمر", "تمور", "تمر سكري", "سكري", "خلاص", "عجوة", "مجدول", "روثانة", "رطب", "برني", "عنبري", "صفاوي", "صقعي", "خضري", "فاخر", "premium dates", "best dates", "Ajwa", "Medjool", "Sukkary", "Khalas", "Safawi", "Sagai", "Khudri", "Ruthana", "Barni", "Anbara",
|
|
|
21 |
"ري", "سقي", "تسميد", "مبيد", "متى أسقي النخلة", "نصائح العناية", "رش", "تقليم", "عناية", "كيف أعتني",
|
22 |
"palm care", "how to water", "fertilizer", "pest control", "sunlight", "organic spray", "how to prune",
|
|
|
23 |
"كم نخلة", "كم تمر", "عدد النخل", "الجو", "الطقس", "الحرارة", "الرطوبة", "مناسب للتلقيح", "is it good weather", "weather", "temperature", "total palms", "healthy palms", "sick palms",
|
|
|
24 |
"أين أشتري تمر", "أفضل تمر", "تمور مغشوشة", "تمور القصيم", "تمور المدينة", "جودة التمر", "التغليف", "شراء تمر", "buy dates", "where to find", "identify good dates", "how to store dates",
|
|
|
25 |
"افتح الكاميرا", "حلل الصورة", "قيم النخلة", "قيم التمر", "camera", "analyze", "scan", "image detection",
|
|
|
26 |
"تطبيق لينة", "نظام لينة", "عن لينة", "Lina app", "explain Lina", "help with Lina", "what is Lina"
|
27 |
]
|
28 |
|
29 |
greetings = ["سلام", "السلام عليكم", "أهلاً", "هاي", "hi", "hello", "hey"]
|
30 |
intro_questions = ["من أنت", "مين انت", "what is this", "who are you", "explain the app", "about lina"]
|
31 |
|
32 |
-
# ====================== 3)
|
33 |
-
def
|
34 |
-
# Check
|
35 |
-
if any(
|
36 |
-
return "
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
return "أنا Lina ✨ نظام ذكي لمساعدة مزارعي النخيل ومستهلكي التمور!"
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import gradio as gr
|
6 |
|
7 |
+
# ====================== 1) Load model ======================
|
8 |
+
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview" # ✅ الصحيح
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True, trust_remote_code=True)
|
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
model_name,
|
12 |
device_map="auto",
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
trust_remote_code=True,
|
15 |
+
revision="main"
|
16 |
)
|
17 |
|
18 |
+
# ====================== 2) System prompts ======================
|
19 |
allowed_keywords = [
|
20 |
+
# 🌴 Palm-related
|
21 |
"palm", "palms", "نخلة", "نخل", "نخلي", "فسيلة", "فسائل", "جذع", "سعف", "خوص", "جريد", "شماريخ", "عذوق", "مزرعة نخل", "offshoot", "date palm",
|
22 |
+
# 🐛 Diseases
|
23 |
"مرض النخيل", "ذبول", "لفحة", "اللفحة السوداء", "فطريات", "قمل أبيض", "ذبول الفيوزاريم", "تبقعات الأوراق", "نقص المغنيسيوم", "نقص البوتاسيوم", "اصفرار الخوص", "احتراق الجريد", "الثمر ما يكتمل",
|
24 |
"Black scorch", "Fusarium wilt", "Rachis blight", "Leaf spot", "Mites", "Insects", "White bugs", "Parlatoria", "Magnesium deficiency", "Potassium deficiency", "Manganese deficiency",
|
25 |
+
# 🍇 Dates
|
26 |
"تمر", "تمور", "تمر سكري", "سكري", "خلاص", "عجوة", "مجدول", "روثانة", "رطب", "برني", "عنبري", "صفاوي", "صقعي", "خضري", "فاخر", "premium dates", "best dates", "Ajwa", "Medjool", "Sukkary", "Khalas", "Safawi", "Sagai", "Khudri", "Ruthana", "Barni", "Anbara",
|
27 |
+
# 🌱 Care & Maintenance
|
28 |
"ري", "سقي", "تسميد", "مبيد", "متى أسقي النخلة", "نصائح العناية", "رش", "تقليم", "عناية", "كيف أعتني",
|
29 |
"palm care", "how to water", "fertilizer", "pest control", "sunlight", "organic spray", "how to prune",
|
30 |
+
# 🌦️ Stats & Weather
|
31 |
"كم نخلة", "كم تمر", "عدد النخل", "الجو", "الطقس", "الحرارة", "الرطوبة", "مناسب للتلقيح", "is it good weather", "weather", "temperature", "total palms", "healthy palms", "sick palms",
|
32 |
+
# 🛒 Consumer
|
33 |
"أين أشتري تمر", "أفضل تمر", "تمور مغشوشة", "تمور القصيم", "تمور المدينة", "جودة التمر", "التغليف", "شراء تمر", "buy dates", "where to find", "identify good dates", "how to store dates",
|
34 |
+
# 📸 App features
|
35 |
"افتح الكاميرا", "حلل الصورة", "قيم النخلة", "قيم التمر", "camera", "analyze", "scan", "image detection",
|
36 |
+
# ℹ️ General
|
37 |
"تطبيق لينة", "نظام لينة", "عن لينة", "Lina app", "explain Lina", "help with Lina", "what is Lina"
|
38 |
]
|
39 |
|
40 |
greetings = ["سلام", "السلام عليكم", "أهلاً", "هاي", "hi", "hello", "hey"]
|
41 |
intro_questions = ["من أنت", "مين انت", "what is this", "who are you", "explain the app", "about lina"]
|
42 |
|
43 |
+
# ====================== 3) Chat function ======================
|
44 |
+
def chat(user_message):
|
45 |
+
# Check if input is allowed
|
46 |
+
if not any(keyword in user_message.lower() for keyword in allowed_keywords + greetings + intro_questions):
|
47 |
+
return "❗ عذرًا، هذا النظام متخصص فقط بالنخيل والتمور. حاول أن تسأل عن شيء متعلق بذلك 🌴."
|
48 |
|
49 |
+
# Build prompt
|
50 |
+
prompt = f"<|user|>\n{user_message}\n<|assistant|>"
|
|
|
51 |
|
52 |
+
# Generate answer
|
53 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
54 |
+
output = model.generate(
|
55 |
+
**inputs,
|
56 |
+
max_new_tokens=500,
|
57 |
+
temperature=0.7,
|
58 |
+
top_p=0.9,
|
59 |
+
do_sample=True,
|
60 |
+
repetition_penalty=1.1,
|
61 |
+
pad_token_id=tokenizer.eos_token_id
|
62 |
+
)
|
63 |
+
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
|
64 |
|
65 |
+
# Extract the assistant's reply
|
66 |
+
reply = decoded_output.split("<|assistant|>")[-1].strip()
|
67 |
+
return reply
|
|
|
68 |
|
69 |
+
# ====================== 4) Gradio Interface ======================
|
70 |
+
iface = gr.Interface(
|
71 |
+
fn=chat,
|
72 |
+
inputs=gr.Textbox(lines=2, placeholder="اكتب سؤالك عن النخيل أو التمر هنا..."),
|
73 |
+
outputs=gr.Textbox(),
|
74 |
+
title="مساعد لينة - Lina Assistant 🌴",
|
75 |
+
description="اسألني عن النخيل، التمور، العناية، الأمراض، الطقس أو أي شيء متعلق! 🍃"
|
76 |
+
)
|
77 |
|
78 |
+
iface.launch()
|