radub23 commited on
Commit
b426f35
·
1 Parent(s): 3ff490d

Update Gradio interface for warning lamp detector with image upload functionality

Browse files
Files changed (1) hide show
  1. app.py +61 -43
app.py CHANGED
@@ -1,64 +1,82 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
  response = ""
29
-
30
  for message in client.chat_completion(
31
  messages,
32
- max_tokens=max_tokens,
33
  stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import os
4
 
5
  """
6
+ Warning Lamp Detector using Hugging Face Inference API
7
+ This application allows users to upload images of warning lamps and get classification results.
8
  """
 
9
 
10
+ # Initialize the client with your model
11
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
12
 
13
+ def detect_warning_lamp(image, history: list[tuple[str, str]], system_message):
14
+ """
15
+ Process the uploaded image and return detection results
16
+ """
17
+ # TODO: Replace with actual model inference
18
+ # This is a placeholder response - you'll need to integrate your actual model
 
 
19
  messages = [{"role": "system", "content": system_message}]
20
+
21
+ # Add the image analysis request
22
+ messages.append({
23
+ "role": "user",
24
+ "content": f"Please analyze this warning lamp image and provide a detailed classification."
25
+ })
 
 
26
 
27
  response = ""
 
28
  for message in client.chat_completion(
29
  messages,
30
+ max_tokens=512,
31
  stream=True,
32
+ temperature=0.7,
33
+ top_p=0.95,
34
  ):
35
  token = message.choices[0].delta.content
 
36
  response += token
37
  yield response
38
 
39
+ # Create a custom interface with image upload
40
+ with gr.Blocks(title="Warning Lamp Detector", theme=gr.themes.Soft()) as demo:
41
+ gr.Markdown("""
42
+ # 🚨 Warning Lamp Detector
43
+ Upload an image of a warning lamp to get its classification.
44
+
45
+ ### Instructions:
46
+ 1. Upload a clear image of the warning lamp
47
+ 2. Wait for the analysis
48
+ 3. View the detailed classification results
49
+ """)
50
+
51
+ with gr.Row():
52
+ with gr.Column(scale=1):
53
+ image_input = gr.Image(
54
+ label="Upload Warning Lamp Image",
55
+ type="pil",
56
+ tool="select"
57
+ )
58
+ system_message = gr.Textbox(
59
+ value="You are an expert in warning lamp classification. Analyze the image and provide detailed information about the type, color, and status of the warning lamp.",
60
+ label="System Message",
61
+ lines=3
62
+ )
63
+
64
+ with gr.Column(scale=1):
65
+ chatbot = gr.Chatbot(
66
+ [],
67
+ elem_id="chatbot",
68
+ bubble_full_width=False,
69
+ avatar_images=(None, "🚨"),
70
+ height=400
71
+ )
72
+
73
+ # Add a submit button
74
+ submit_btn = gr.Button("Analyze Warning Lamp", variant="primary")
75
+ submit_btn.click(
76
+ detect_warning_lamp,
77
+ inputs=[image_input, chatbot, system_message],
78
+ outputs=chatbot
79
+ )
80
 
81
  if __name__ == "__main__":
82
  demo.launch()