radub23 commited on
Commit
aefec06
·
1 Parent(s): 059897f

Completely rewrite detect_warning_lamp with robust tensor handling and debugging

Browse files
Files changed (1) hide show
  1. app.py +55 -4
app.py CHANGED
@@ -41,27 +41,78 @@ def detect_warning_lamp(image, history: list[tuple[str, str]], system_message):
41
  Returns:
42
  Updated chat history with prediction results
43
  """
 
 
 
 
44
  try:
 
 
 
45
  # Convert PIL image to FastAI compatible format
46
  img = PILImage(image)
 
47
 
48
  # Get model prediction
 
49
  pred_class, pred_idx, probs = learn_inf.predict(img)
50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  # Format the prediction results
52
- confidence = float(probs[int(pred_idx)]) # Convert to float for better formatting
53
- response = f"Detected Warning Lamp: {pred_class}\nConfidence: {confidence:.2%}"
54
 
55
  # Add probabilities for all classes
56
  response += "\n\nProbabilities for all classes:"
57
- for i, (cls, prob) in enumerate(zip(learn_inf.dls.vocab, probs)):
58
- response += f"\n- {cls}: {float(prob):.2%}"
 
 
 
 
 
 
 
 
 
 
59
 
60
  # Update chat history
61
  history.append((None, response))
62
  return history
63
  except Exception as e:
64
  error_msg = f"Error processing image: {str(e)}"
 
 
 
65
  history.append((None, error_msg))
66
  return history
67
 
 
41
  Returns:
42
  Updated chat history with prediction results
43
  """
44
+ if image is None:
45
+ history.append((None, "Please upload an image first."))
46
+ return history
47
+
48
  try:
49
+ # Print debug info
50
+ print(f"Image type: {type(image)}")
51
+
52
  # Convert PIL image to FastAI compatible format
53
  img = PILImage(image)
54
+ print(f"Converted to PILImage: {type(img)}")
55
 
56
  # Get model prediction
57
+ print("Running prediction...")
58
  pred_class, pred_idx, probs = learn_inf.predict(img)
59
 
60
+ # Print debug info about prediction results
61
+ print(f"Prediction class type: {type(pred_class)}, value: {pred_class}")
62
+ print(f"Prediction index type: {type(pred_idx)}, value: {pred_idx}")
63
+ print(f"Probabilities type: {type(probs)}, shape: {probs.shape if hasattr(probs, 'shape') else 'no shape'}")
64
+
65
+ # Safely convert tensors to Python types
66
+ try:
67
+ # Handle pred_class (could be string or tensor)
68
+ if hasattr(pred_class, 'item'):
69
+ pred_class_str = str(pred_class.item())
70
+ else:
71
+ pred_class_str = str(pred_class)
72
+
73
+ # Handle pred_idx (convert tensor to int)
74
+ if hasattr(pred_idx, 'item'):
75
+ pred_idx_int = pred_idx.item()
76
+ else:
77
+ pred_idx_int = int(pred_idx)
78
+
79
+ # Get confidence score for predicted class
80
+ if hasattr(probs[pred_idx_int], 'item'):
81
+ confidence = probs[pred_idx_int].item()
82
+ else:
83
+ confidence = float(probs[pred_idx_int])
84
+
85
+ print(f"Converted values - class: {pred_class_str}, index: {pred_idx_int}, confidence: {confidence}")
86
+ except Exception as conversion_error:
87
+ print(f"Error during tensor conversion: {conversion_error}")
88
+ raise
89
+
90
  # Format the prediction results
91
+ response = f"Detected Warning Lamp: {pred_class_str}\nConfidence: {confidence:.2%}"
 
92
 
93
  # Add probabilities for all classes
94
  response += "\n\nProbabilities for all classes:"
95
+
96
+ # Safely iterate through probabilities
97
+ for i, cls in enumerate(learn_inf.dls.vocab):
98
+ try:
99
+ if hasattr(probs[i], 'item'):
100
+ prob_value = probs[i].item()
101
+ else:
102
+ prob_value = float(probs[i])
103
+ response += f"\n- {cls}: {prob_value:.2%}"
104
+ except Exception as prob_error:
105
+ print(f"Error processing probability for class {cls}: {prob_error}")
106
+ response += f"\n- {cls}: Error"
107
 
108
  # Update chat history
109
  history.append((None, response))
110
  return history
111
  except Exception as e:
112
  error_msg = f"Error processing image: {str(e)}"
113
+ print(f"Exception in detect_warning_lamp: {e}")
114
+ import traceback
115
+ traceback.print_exc()
116
  history.append((None, error_msg))
117
  return history
118