hieudx7 commited on
Commit
c58342b
·
1 Parent(s): f224484
Files changed (1) hide show
  1. agent.py +60 -203
agent.py CHANGED
@@ -1,209 +1,66 @@
1
- """ Basic Agent Evaluation Runner"""
2
  import os
3
- import inspect
4
- import gradio as gr
5
- import requests
6
- import pandas as pd
7
- from langchain_core.messages import HumanMessage
8
- from agent import build_graph
9
-
10
-
11
-
12
- # (Keep Constants as is)
13
- # --- Constants ---
14
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
15
-
16
- # --- Basic Agent Definition ---
17
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
18
-
19
-
20
- class BasicAgent:
21
- """A langgraph agent."""
22
- def __init__(self):
23
- print("BasicAgent initialized.")
24
- self.graph = build_graph()
25
-
26
- def __call__(self, question: str) -> str:
27
- print(f"Agent received question (first 50 chars): {question[:50]}...")
28
- # Wrap the question in a HumanMessage from langchain_core
29
- messages = [HumanMessage(content=question)]
30
- messages = self.graph.invoke({"messages": messages})
31
- answer = messages['messages'][-1].content
32
- return answer[14:]
33
-
34
-
35
- def run_and_submit_all( profile: gr.OAuthProfile | None):
36
- """
37
- Fetches all questions, runs the BasicAgent on them, submits all answers,
38
- and displays the results.
39
- """
40
- # --- Determine HF Space Runtime URL and Repo URL ---
41
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
42
-
43
- if profile:
44
- username= f"{profile.username}"
45
- print(f"User logged in: {username}")
46
- else:
47
- print("User not logged in.")
48
- return "Please Login to Hugging Face with the button.", None
49
-
50
- api_url = DEFAULT_API_URL
51
- questions_url = f"{api_url}/questions"
52
- submit_url = f"{api_url}/submit"
53
-
54
- # 1. Instantiate Agent ( modify this part to create your agent)
55
- try:
56
- agent = BasicAgent()
57
- except Exception as e:
58
- print(f"Error instantiating agent: {e}")
59
- return f"Error initializing agent: {e}", None
60
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
61
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
62
- print(agent_code)
63
-
64
- # 2. Fetch Questions
65
- print(f"Fetching questions from: {questions_url}")
66
- try:
67
- response = requests.get(questions_url, timeout=15)
68
- response.raise_for_status()
69
- questions_data = response.json()
70
- if not questions_data:
71
- print("Fetched questions list is empty.")
72
- return "Fetched questions list is empty or invalid format.", None
73
- print(f"Fetched {len(questions_data)} questions.")
74
- except requests.exceptions.RequestException as e:
75
- print(f"Error fetching questions: {e}")
76
- return f"Error fetching questions: {e}", None
77
- except requests.exceptions.JSONDecodeError as e:
78
- print(f"Error decoding JSON response from questions endpoint: {e}")
79
- print(f"Response text: {response.text[:500]}")
80
- return f"Error decoding server response for questions: {e}", None
81
- except Exception as e:
82
- print(f"An unexpected error occurred fetching questions: {e}")
83
- return f"An unexpected error occurred fetching questions: {e}", None
84
-
85
- # 3. Run your Agent
86
- results_log = []
87
- answers_payload = []
88
- print(f"Running agent on {len(questions_data)} questions...")
89
- for item in questions_data:
90
- task_id = item.get("task_id")
91
- question_text = item.get("question")
92
- if not task_id or question_text is None:
93
- print(f"Skipping item with missing task_id or question: {item}")
94
- continue
95
- try:
96
- submitted_answer = agent(question_text)
97
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
99
- except Exception as e:
100
- print(f"Error running agent on task {task_id}: {e}")
101
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
102
-
103
- if not answers_payload:
104
- print("Agent did not produce any answers to submit.")
105
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
106
-
107
- # 4. Prepare Submission
108
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
109
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
110
- print(status_update)
111
-
112
- # 5. Submit
113
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
114
- try:
115
- response = requests.post(submit_url, json=submission_data, timeout=60)
116
- response.raise_for_status()
117
- result_data = response.json()
118
- final_status = (
119
- f"Submission Successful!\n"
120
- f"User: {result_data.get('username')}\n"
121
- f"Overall Score: {result_data.get('score', 'N/A')}% "
122
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
123
- f"Message: {result_data.get('message', 'No message received.')}"
124
  )
125
- print("Submission successful.")
126
- results_df = pd.DataFrame(results_log)
127
- return final_status, results_df
128
- except requests.exceptions.HTTPError as e:
129
- error_detail = f"Server responded with status {e.response.status_code}."
130
- try:
131
- error_json = e.response.json()
132
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
133
- except requests.exceptions.JSONDecodeError:
134
- error_detail += f" Response: {e.response.text[:500]}"
135
- status_message = f"Submission Failed: {error_detail}"
136
- print(status_message)
137
- results_df = pd.DataFrame(results_log)
138
- return status_message, results_df
139
- except requests.exceptions.Timeout:
140
- status_message = "Submission Failed: The request timed out."
141
- print(status_message)
142
- results_df = pd.DataFrame(results_log)
143
- return status_message, results_df
144
- except requests.exceptions.RequestException as e:
145
- status_message = f"Submission Failed: Network error - {e}"
146
- print(status_message)
147
- results_df = pd.DataFrame(results_log)
148
- return status_message, results_df
149
- except Exception as e:
150
- status_message = f"An unexpected error occurred during submission: {e}"
151
- print(status_message)
152
- results_df = pd.DataFrame(results_log)
153
- return status_message, results_df
154
-
155
-
156
- # --- Build Gradio Interface using Blocks ---
157
- with gr.Blocks() as demo:
158
- gr.Markdown("# Basic Agent Evaluation Runner")
159
- gr.Markdown(
160
- """
161
- **Instructions:**
162
-
163
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
164
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
165
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
166
-
167
- ---
168
- **Disclaimers:**
169
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
170
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
171
- """
172
  )
 
173
 
174
- gr.LoginButton()
175
-
176
- run_button = gr.Button("Run Evaluation & Submit All Answers")
177
-
178
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
179
- # Removed max_rows=10 from DataFrame constructor
180
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
181
-
182
- run_button.click(
183
- fn=run_and_submit_all,
184
- outputs=[status_output, results_table]
185
- )
186
 
 
187
  if __name__ == "__main__":
188
- print("\n" + "-"*30 + " App Starting " + "-"*30)
189
- # Check for SPACE_HOST and SPACE_ID at startup for information
190
- space_host_startup = os.getenv("SPACE_HOST")
191
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
192
-
193
- if space_host_startup:
194
- print(f"✅ SPACE_HOST found: {space_host_startup}")
195
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
196
- else:
197
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
198
-
199
- if space_id_startup: # Print repo URLs if SPACE_ID is found
200
- print(f"✅ SPACE_ID found: {space_id_startup}")
201
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
202
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
203
- else:
204
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
205
-
206
- print("-"*(60 + len(" App Starting ")) + "\n")
207
-
208
- print("Launching Gradio Interface for Basic Agent Evaluation...")
209
- demo.launch(debug=True, share=False)
 
1
+ """LangGraph Agent"""
2
  import os
3
+ from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
6
+ from langgraph.prebuilt import ToolNode
7
+ from langchain_core.messages import SystemMessage, HumanMessage
8
+ from prompts import SYS_PROMPT
9
+ from tools import tools
10
+ from retriever import vector_store
11
+ from langchain_openai import ChatOpenAI
12
+
13
+
14
+ load_dotenv()
15
+
16
+
17
+ # System message
18
+ sys_msg = SystemMessage(content=SYS_PROMPT)
19
+
20
+
21
+ # Build graph function
22
+ def build_graph():
23
+ """Build the graph"""
24
+ llm = ChatOpenAI(temperature=0.1, model="gpt-4o", openai_api_key=os.getenv("OPENAI_API_KEY"))
25
+ # Bind tools to LLM
26
+ llm_with_tools = llm.bind_tools(tools)
27
+
28
+ # Node
29
+ def assistant(state: MessagesState):
30
+ """Assistant node"""
31
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
32
+
33
+ def retriever(state: MessagesState):
34
+ """Retriever node"""
35
+ similar_question = vector_store.similarity_search(state["messages"][0].content, k=3)
36
+ similar_question_content = "\n".join([f"{idx+1}. {doc.page_content}" for idx, doc in enumerate(similar_question)])
37
+ example_msg = HumanMessage(
38
+ content=f"Here I provide some similar questions and answer for reference in case you can't find answer from tool result: \n\n{similar_question_content}",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  )
40
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
41
+
42
+ builder = StateGraph(MessagesState)
43
+ builder.add_node("retriever", retriever)
44
+ builder.add_node("assistant", assistant)
45
+ builder.add_node("tools", ToolNode(tools))
46
+ builder.add_edge(START, "retriever")
47
+ builder.add_edge("retriever", "assistant")
48
+ builder.add_conditional_edges(
49
+ "assistant",
50
+ tools_condition,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  )
52
+ builder.add_edge("tools", "assistant")
53
 
54
+ # Compile graph
55
+ return builder.compile()
 
 
 
 
 
 
 
 
 
 
56
 
57
+ # test
58
  if __name__ == "__main__":
59
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
60
+ # Build the graph
61
+ graph = build_graph()
62
+ # Run the graph
63
+ messages = [HumanMessage(content=question)]
64
+ messages = graph.invoke({"messages": messages})
65
+ for m in messages["messages"]:
66
+ m.pretty_print()