Spaces:
Sleeping
Sleeping
hieudx7
commited on
Commit
·
c58342b
1
Parent(s):
f224484
add buid
Browse files
agent.py
CHANGED
@@ -1,209 +1,66 @@
|
|
1 |
-
"""
|
2 |
import os
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
from langchain_core.messages import HumanMessage
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
"""
|
40 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
41 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
42 |
-
|
43 |
-
if profile:
|
44 |
-
username= f"{profile.username}"
|
45 |
-
print(f"User logged in: {username}")
|
46 |
-
else:
|
47 |
-
print("User not logged in.")
|
48 |
-
return "Please Login to Hugging Face with the button.", None
|
49 |
-
|
50 |
-
api_url = DEFAULT_API_URL
|
51 |
-
questions_url = f"{api_url}/questions"
|
52 |
-
submit_url = f"{api_url}/submit"
|
53 |
-
|
54 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
55 |
-
try:
|
56 |
-
agent = BasicAgent()
|
57 |
-
except Exception as e:
|
58 |
-
print(f"Error instantiating agent: {e}")
|
59 |
-
return f"Error initializing agent: {e}", None
|
60 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
61 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
62 |
-
print(agent_code)
|
63 |
-
|
64 |
-
# 2. Fetch Questions
|
65 |
-
print(f"Fetching questions from: {questions_url}")
|
66 |
-
try:
|
67 |
-
response = requests.get(questions_url, timeout=15)
|
68 |
-
response.raise_for_status()
|
69 |
-
questions_data = response.json()
|
70 |
-
if not questions_data:
|
71 |
-
print("Fetched questions list is empty.")
|
72 |
-
return "Fetched questions list is empty or invalid format.", None
|
73 |
-
print(f"Fetched {len(questions_data)} questions.")
|
74 |
-
except requests.exceptions.RequestException as e:
|
75 |
-
print(f"Error fetching questions: {e}")
|
76 |
-
return f"Error fetching questions: {e}", None
|
77 |
-
except requests.exceptions.JSONDecodeError as e:
|
78 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
79 |
-
print(f"Response text: {response.text[:500]}")
|
80 |
-
return f"Error decoding server response for questions: {e}", None
|
81 |
-
except Exception as e:
|
82 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
83 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
84 |
-
|
85 |
-
# 3. Run your Agent
|
86 |
-
results_log = []
|
87 |
-
answers_payload = []
|
88 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
89 |
-
for item in questions_data:
|
90 |
-
task_id = item.get("task_id")
|
91 |
-
question_text = item.get("question")
|
92 |
-
if not task_id or question_text is None:
|
93 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
94 |
-
continue
|
95 |
-
try:
|
96 |
-
submitted_answer = agent(question_text)
|
97 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
98 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
99 |
-
except Exception as e:
|
100 |
-
print(f"Error running agent on task {task_id}: {e}")
|
101 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
102 |
-
|
103 |
-
if not answers_payload:
|
104 |
-
print("Agent did not produce any answers to submit.")
|
105 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
106 |
-
|
107 |
-
# 4. Prepare Submission
|
108 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
109 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
110 |
-
print(status_update)
|
111 |
-
|
112 |
-
# 5. Submit
|
113 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
114 |
-
try:
|
115 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
116 |
-
response.raise_for_status()
|
117 |
-
result_data = response.json()
|
118 |
-
final_status = (
|
119 |
-
f"Submission Successful!\n"
|
120 |
-
f"User: {result_data.get('username')}\n"
|
121 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
122 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
123 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
124 |
)
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
print(status_message)
|
137 |
-
results_df = pd.DataFrame(results_log)
|
138 |
-
return status_message, results_df
|
139 |
-
except requests.exceptions.Timeout:
|
140 |
-
status_message = "Submission Failed: The request timed out."
|
141 |
-
print(status_message)
|
142 |
-
results_df = pd.DataFrame(results_log)
|
143 |
-
return status_message, results_df
|
144 |
-
except requests.exceptions.RequestException as e:
|
145 |
-
status_message = f"Submission Failed: Network error - {e}"
|
146 |
-
print(status_message)
|
147 |
-
results_df = pd.DataFrame(results_log)
|
148 |
-
return status_message, results_df
|
149 |
-
except Exception as e:
|
150 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
151 |
-
print(status_message)
|
152 |
-
results_df = pd.DataFrame(results_log)
|
153 |
-
return status_message, results_df
|
154 |
-
|
155 |
-
|
156 |
-
# --- Build Gradio Interface using Blocks ---
|
157 |
-
with gr.Blocks() as demo:
|
158 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
159 |
-
gr.Markdown(
|
160 |
-
"""
|
161 |
-
**Instructions:**
|
162 |
-
|
163 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
164 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
165 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
166 |
-
|
167 |
-
---
|
168 |
-
**Disclaimers:**
|
169 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
170 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
171 |
-
"""
|
172 |
)
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
177 |
-
|
178 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
179 |
-
# Removed max_rows=10 from DataFrame constructor
|
180 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
181 |
-
|
182 |
-
run_button.click(
|
183 |
-
fn=run_and_submit_all,
|
184 |
-
outputs=[status_output, results_table]
|
185 |
-
)
|
186 |
|
|
|
187 |
if __name__ == "__main__":
|
188 |
-
|
189 |
-
#
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
else:
|
197 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
198 |
-
|
199 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
200 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
201 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
202 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
203 |
-
else:
|
204 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
205 |
-
|
206 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
207 |
-
|
208 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
209 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
+
"""LangGraph Agent"""
|
2 |
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
+
from langgraph.prebuilt import tools_condition
|
6 |
+
from langgraph.prebuilt import ToolNode
|
7 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
8 |
+
from prompts import SYS_PROMPT
|
9 |
+
from tools import tools
|
10 |
+
from retriever import vector_store
|
11 |
+
from langchain_openai import ChatOpenAI
|
12 |
+
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
|
17 |
+
# System message
|
18 |
+
sys_msg = SystemMessage(content=SYS_PROMPT)
|
19 |
+
|
20 |
+
|
21 |
+
# Build graph function
|
22 |
+
def build_graph():
|
23 |
+
"""Build the graph"""
|
24 |
+
llm = ChatOpenAI(temperature=0.1, model="gpt-4o", openai_api_key=os.getenv("OPENAI_API_KEY"))
|
25 |
+
# Bind tools to LLM
|
26 |
+
llm_with_tools = llm.bind_tools(tools)
|
27 |
+
|
28 |
+
# Node
|
29 |
+
def assistant(state: MessagesState):
|
30 |
+
"""Assistant node"""
|
31 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
32 |
+
|
33 |
+
def retriever(state: MessagesState):
|
34 |
+
"""Retriever node"""
|
35 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content, k=3)
|
36 |
+
similar_question_content = "\n".join([f"{idx+1}. {doc.page_content}" for idx, doc in enumerate(similar_question)])
|
37 |
+
example_msg = HumanMessage(
|
38 |
+
content=f"Here I provide some similar questions and answer for reference in case you can't find answer from tool result: \n\n{similar_question_content}",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
41 |
+
|
42 |
+
builder = StateGraph(MessagesState)
|
43 |
+
builder.add_node("retriever", retriever)
|
44 |
+
builder.add_node("assistant", assistant)
|
45 |
+
builder.add_node("tools", ToolNode(tools))
|
46 |
+
builder.add_edge(START, "retriever")
|
47 |
+
builder.add_edge("retriever", "assistant")
|
48 |
+
builder.add_conditional_edges(
|
49 |
+
"assistant",
|
50 |
+
tools_condition,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
)
|
52 |
+
builder.add_edge("tools", "assistant")
|
53 |
|
54 |
+
# Compile graph
|
55 |
+
return builder.compile()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# test
|
58 |
if __name__ == "__main__":
|
59 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
60 |
+
# Build the graph
|
61 |
+
graph = build_graph()
|
62 |
+
# Run the graph
|
63 |
+
messages = [HumanMessage(content=question)]
|
64 |
+
messages = graph.invoke({"messages": messages})
|
65 |
+
for m in messages["messages"]:
|
66 |
+
m.pretty_print()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|