Spaces:
Sleeping
Sleeping
"""LangGraph Agent""" | |
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from prompts import SYS_PROMPT | |
from tools import tools | |
from retriever import vector_store | |
from langchain_openai import ChatOpenAI | |
load_dotenv() | |
# System message | |
sys_msg = SystemMessage(content=SYS_PROMPT) | |
# Build graph function | |
def build_graph(): | |
"""Build the graph""" | |
llm = ChatOpenAI(temperature=0.1, model="gpt-4o", openai_api_key=os.getenv("OPENAI_API_KEY")) | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
# Node | |
def assistant(state: MessagesState): | |
"""Assistant node""" | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
def retriever(state: MessagesState): | |
"""Retriever node""" | |
similar_question = vector_store.similarity_search(state["messages"][0].content, k=3) | |
similar_question_content = "\n".join([f"{idx+1}. {doc.page_content}" for idx, doc in enumerate(similar_question)]) | |
example_msg = HumanMessage( | |
content=f"Here I provide some similar questions and answer for reference in case you can't find answer from tool result: \n\n{similar_question_content}", | |
) | |
return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant") | |
# Compile graph | |
return builder.compile() | |
# test | |
if __name__ == "__main__": | |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" | |
# Build the graph | |
graph = build_graph() | |
# Run the graph | |
messages = [HumanMessage(content=question)] | |
messages = graph.invoke({"messages": messages}) | |
answer = messages['messages'][-1].content | |
for m in messages["messages"]: | |
m.pretty_print() |