import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer # Load your fine-tuned model and tokenizer model_name = "quadranttechnologies/Receipt_Image_Analyzer" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define a prediction function def analyze_receipt(receipt_text): inputs = tokenizer(receipt_text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) logits = outputs.logits predicted_class = logits.argmax(-1).item() return f"Predicted Class: {predicted_class}" # Create a Gradio interface interface = gr.Interface( fn=analyze_receipt, inputs="text", outputs="text", title="Receipt Image Analyzer", description="Analyze receipts for relevant information using a fine-tuned LLM model.", ) # Launch the Gradio app interface.launch()