Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
from threading import Thread
|
3 |
+
import random
|
4 |
+
import os
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import spaces
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
12 |
+
from pydub import AudioSegment
|
13 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
14 |
+
from huggingface_hub import InferenceClient
|
15 |
+
from streamer import ParlerTTSStreamer
|
16 |
+
import time
|
17 |
+
|
18 |
+
|
19 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
20 |
+
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
21 |
+
|
22 |
+
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
23 |
+
|
24 |
+
jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H"
|
25 |
+
|
26 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
27 |
+
jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
28 |
+
).to(device)
|
29 |
+
|
30 |
+
# client = InferenceClient(token=os.getenv("HF_TOKEN"))
|
31 |
+
|
32 |
+
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
34 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
35 |
+
|
36 |
+
SAMPLE_RATE = feature_extractor.sampling_rate
|
37 |
+
SEED = 42
|
38 |
+
|
39 |
+
|
40 |
+
def numpy_to_mp3(audio_array, sampling_rate):
|
41 |
+
# Normalize audio_array if it's floating-point
|
42 |
+
if np.issubdtype(audio_array.dtype, np.floating):
|
43 |
+
max_val = np.max(np.abs(audio_array))
|
44 |
+
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
|
45 |
+
audio_array = audio_array.astype(np.int16)
|
46 |
+
|
47 |
+
# Create an audio segment from the numpy array
|
48 |
+
audio_segment = AudioSegment(
|
49 |
+
audio_array.tobytes(),
|
50 |
+
frame_rate=sampling_rate,
|
51 |
+
sample_width=audio_array.dtype.itemsize,
|
52 |
+
channels=1
|
53 |
+
)
|
54 |
+
|
55 |
+
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
|
56 |
+
mp3_io = io.BytesIO()
|
57 |
+
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
|
58 |
+
|
59 |
+
# Get the MP3 bytes
|
60 |
+
mp3_bytes = mp3_io.getvalue()
|
61 |
+
mp3_io.close()
|
62 |
+
|
63 |
+
return mp3_bytes
|
64 |
+
|
65 |
+
sampling_rate = model.audio_encoder.config.sampling_rate
|
66 |
+
frame_rate = model.audio_encoder.config.frame_rate
|
67 |
+
|
68 |
+
|
69 |
+
def generate_response(audio):
|
70 |
+
# gr.Info("Transcribing Audio", duration=5)
|
71 |
+
# question = client.automatic_speech_recognition(audio).text
|
72 |
+
# messages = [{"role": "system", "content": ("You are a magic 8 ball."
|
73 |
+
# "Someone will present to you a situation or question and your job "
|
74 |
+
# "is to answer with a cryptic addage or proverb such as "
|
75 |
+
# "'curiosity killed the cat' or 'The early bird gets the worm'."
|
76 |
+
# "Keep your answers short and do not include the phrase 'Magic 8 Ball' in your response. If the question does not make sense or is off-topic, say 'Foolish questions get foolish answers.'"
|
77 |
+
# "For example, 'Magic 8 Ball, should I get a dog?', 'A dog is ready for you but are you ready for the dog?'")},
|
78 |
+
# {"role": "user", "content": f"Magic 8 Ball please answer this question - {question}"}]
|
79 |
+
|
80 |
+
# response = client.chat_completion(messages, max_tokens=64, seed=random.randint(1, 5000), model="mistralai/Mistral-7B-Instruct-v0.3")
|
81 |
+
# response = response.choices[0].message.content.replace("Magic 8 Ball", "")
|
82 |
+
return "test response", None, None
|
83 |
+
|
84 |
+
@spaces.GPU
|
85 |
+
def read_response(answer):
|
86 |
+
|
87 |
+
play_steps_in_s = 2.0
|
88 |
+
play_steps = int(frame_rate * play_steps_in_s)
|
89 |
+
|
90 |
+
description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality."
|
91 |
+
description_tokens = tokenizer(description, return_tensors="pt").to(device)
|
92 |
+
|
93 |
+
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
94 |
+
prompt = tokenizer(answer, return_tensors="pt").to(device)
|
95 |
+
|
96 |
+
generation_kwargs = dict(
|
97 |
+
input_ids=description_tokens.input_ids,
|
98 |
+
prompt_input_ids=prompt.input_ids,
|
99 |
+
streamer=streamer,
|
100 |
+
do_sample=True,
|
101 |
+
temperature=1.0,
|
102 |
+
min_new_tokens=10,
|
103 |
+
)
|
104 |
+
|
105 |
+
set_seed(SEED)
|
106 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
107 |
+
thread.start()
|
108 |
+
start = time.time()
|
109 |
+
for new_audio in streamer:
|
110 |
+
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds after {time.time() - start} seconds")
|
111 |
+
yield answer, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
|
112 |
+
|
113 |
+
|
114 |
+
with gr.Blocks() as block:
|
115 |
+
gr.HTML(
|
116 |
+
f"""
|
117 |
+
<h1 style='text-align: center;'> Magic 8 Ball 🎱 </h1>
|
118 |
+
<h3 style='text-align: center;'> Ask a question and receive wisdom </h3>
|
119 |
+
<p style='text-align: center;'> Powered by <a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a>
|
120 |
+
"""
|
121 |
+
)
|
122 |
+
with gr.Group():
|
123 |
+
with gr.Row():
|
124 |
+
audio_out = gr.Audio(label="Spoken Answer", streaming=True, autoplay=True, loop=False)
|
125 |
+
answer = gr.Textbox(label="Answer")
|
126 |
+
state = gr.State()
|
127 |
+
with gr.Row():
|
128 |
+
audio_in = gr.Audio(label="Speak you question", sources="microphone", type="filepath")
|
129 |
+
with gr.Row():
|
130 |
+
gr.HTML("""<h3 style='text-align: center;'> Examples: 'What is the meaning of life?', 'Should I get a dog?' </h3>""")
|
131 |
+
audio_in.stop_recording(generate_response, audio_in, [state, answer, audio_out]).then(fn=read_response, inputs=state, outputs=[answer, audio_out])
|
132 |
+
|
133 |
+
block.launch()
|