File size: 2,062 Bytes
96a5a56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import numpy as np
import torch
from transformers import RealmForOpenQA, RealmRetriever

model_name = "google/realm-orqa-nq-openqa"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

retriever = RealmRetriever.from_pretrained(model_name)
tokenizer = retriever.tokenizer
openqa = RealmForOpenQA.from_pretrained(model_name, retriever=retriever)
openqa.to(device)
default_num_block_records = openqa.config.num_block_records

def add_additional_documents(openqa, additional_documents):
    documents = additional_documents.split("\n")
    np_documents = np.array([doc.encode() for doc in  documents], dtype=object)
    
    total_documents = np_documents.shape[0]

    retriever = openqa.retriever
    tokenizer = openqa.retriever.tokenizer
    
    # docs
    retriever.block_records = np.concatenate((retriever.block_records[:default_num_block_records], np_documents), axis=0)

    # embeds
    inputs = tokenizer(documents, padding=True, truncation=True, return_tensors="pt").to(device)

    with torch.no_grad():
        projected_score = openqa.embedder(**inputs, return_dict=True).projected_score
        openqa.block_emb = torch.cat((openqa.block_emb[:default_num_block_records], projected_score), dim=0)

    openqa.config.num_block_records = default_num_block_records + total_documents

def question_answer(question, additional_documents):
    question_ids = tokenizer(question, return_tensors="pt").input_ids

    if additional_documents != "":
        add_additional_documents(openqa, additional_documents)
        
    with torch.no_grad():
        outputs = openqa(input_ids=question_ids.to(device), return_dict=True)

    return tokenizer.decode(outputs.predicted_answer_ids)


additional_documents_input = gr.inputs.Textbox(lines=5, placeholder="Each line represents a document entry. Leave blank to use default wiki documents.")

iface = gr.Interface(
    fn=question_answer,
    inputs=["text", additional_documents_input],
    outputs=["textbox"],
    allow_flagging="never"
)
iface.launch(enable_queue=True)