Spaces:
Build error
Build error
File size: 18,162 Bytes
60840ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import functools as ft
import random
from collections import defaultdict
from copy import deepcopy
from pathlib import Path
import numpy as np
import pandas as pd
import torch
from torch import Tensor
from PrithviWxC.dataloaders.merra2 import Merra2Dataset, SampleSpec
def preproc(
batch: list[dict[str, int | float | Tensor]], padding: dict[tuple[int]]
) -> dict[str, Tensor]:
"""Prepressing function for MERRA2 Dataset
Args:
batch (dict): List of training samples, each sample should be a
dictionary with the following keys::
'sur_static': Numpy array of shape (3, lat, lon). For each pixel (lat, lon), the first dimension indexes sin(lat), cos(lon), sin(lon).
'sur_vals': Torch tensor of shape (parameter, time, lat, lon).
'sur_tars': Torch tensor of shape (parameter, time, lat, lon).
'ulv_vals': Torch tensor of shape (parameter, level, time, lat, lon).
'ulv_tars': Torch tensor of shape (parameter, level, time, lat, lon).
'sur_climate': Torch tensor of shape (nstep, parameter, lat, lon)
'ulv_climate': Torch tensor of shape (nstep parameter, level, lat, lon)
'lead_time': Integer.
'input_time': Interger
padding: Dictionary with keys 'level', 'lat', 'lon', each of dim 2.
Returns:
Dictionary with the following keys::
'x': [batch, time, parameter, lat, lon]
'ys': [batch, nsteps, parameter, lat, lon]
'static': [batch, nstep, parameter, lat, lon]
'lead_time': [batch]
'input_time': [batch]
'climate (Optional)': [batch, nsteps, parameter, lat, lon]
Note:
Here, for x and ys, 'parameter' is [surface parameter, upper level,
parameter x level]. Similarly for the static information we have
[sin(lat), cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod),
...].
""" # noqa: E501
b0 = batch[0]
nbatch = len(batch)
data_keys = set(b0.keys())
essential_keys = {
"sur_static",
"sur_vals",
"sur_tars",
"ulv_vals",
"ulv_tars",
"input_time",
"lead_time",
}
climate_keys = {
"sur_climate",
"ulv_climate",
}
all_keys = essential_keys | climate_keys
if not essential_keys.issubset(data_keys):
raise ValueError("Missing essential keys.")
if not data_keys.issubset(all_keys):
raise ValueError("Unexpected keys in batch.")
# Bring all tensors from the batch into a single tensor
upl_x = torch.empty((nbatch, *b0["ulv_vals"].shape))
upl_y = torch.empty((nbatch, *b0["ulv_tars"].shape))
sur_x = torch.empty((nbatch, *b0["sur_vals"].shape))
sur_y = torch.empty((nbatch, *b0["sur_tars"].shape))
sur_sta = torch.empty((nbatch, *b0["sur_static"].shape))
lead_time = torch.empty(
(nbatch, *b0["lead_time"].shape),
dtype=torch.float32,
)
input_time = torch.empty((nbatch,), dtype=torch.float32)
for i, rec in enumerate(batch):
sur_x[i] = torch.Tensor(rec["sur_vals"])
sur_y[i] = torch.Tensor(rec["sur_tars"])
upl_x[i] = torch.Tensor(rec["ulv_vals"])
upl_y[i] = torch.Tensor(rec["ulv_tars"])
sur_sta[i] = torch.Tensor(rec["sur_static"])
lead_time[i] = rec["lead_time"]
input_time[i] = rec["input_time"]
return_value = {
"lead_time": lead_time,
"input_time": input_time,
"target_time": torch.sum(lead_time).reshape(-1),
}
# Reshape (batch, parameter, level, time, lat, lon)
# -> (batch, time, parameter, level, lat, lon)
upl_x = upl_x.permute((0, 3, 1, 2, 4, 5))
upl_y = upl_y.permute((0, 3, 1, 2, 4, 5))
# Reshape (batch, parameter, time, lat, lon)
# -> (batch, time, parameter, lat, lon)
sur_x = sur_x.permute((0, 2, 1, 3, 4))
sur_y = sur_y.permute((0, 2, 1, 3, 4))
# Pad
padding_2d = (*padding["lon"], *padding["lat"])
def pad2d(x):
return torch.nn.functional.pad(x, padding_2d, mode="constant", value=0)
padding_3d = (*padding["lon"], *padding["lat"], *padding["level"])
def pad3d(x):
return torch.nn.functional.pad(x, padding_3d, mode="constant", value=0)
sur_x = pad2d(sur_x).contiguous()
upl_x = pad3d(upl_x).contiguous()
sur_y = pad2d(sur_y).contiguous()
upl_y = pad3d(upl_y).contiguous()
return_value["statics"] = pad2d(sur_sta).contiguous()
# We stack along the combined parameter level dimension
return_value["x"] = torch.cat(
(sur_x, upl_x.view(*upl_x.shape[:2], -1, *upl_x.shape[4:])), dim=2
)
return_value["ys"] = torch.cat(
(sur_y, upl_y.view(*upl_y.shape[:2], -1, *upl_y.shape[4:])), dim=2
)
if climate_keys.issubset(data_keys):
sur_climate = torch.empty((nbatch, *b0["sur_climate"].shape))
ulv_climate = torch.empty((nbatch, *b0["ulv_climate"].shape))
for i, rec in enumerate(batch):
sur_climate[i] = rec["sur_climate"]
ulv_climate[i] = rec["ulv_climate"]
sur_climate = pad2d(sur_climate)
ulv_climate = pad3d(ulv_climate)
ulv_climate = ulv_climate.view(
*ulv_climate.shape[:2], -1, *ulv_climate.shape[4:]
)
return_value["climates"] = torch.cat((sur_climate, ulv_climate), dim=2)
return return_value
class RolloutSpec(SampleSpec):
"""
A data class to collect the information used to define a rollout sample.
"""
def __init__(
self,
inputs: tuple[pd.Timestamp, pd.Timestamp],
lead_time: int,
target: pd.Timestamp,
):
"""
Args:
inputs: Tuple of timestamps. In ascending order.
lead_time: Lead time. In hours.
target: Timestamp of the target. Can be before or after the inputs.
"""
super().__init__(inputs, lead_time, target)
self.dt = dt = pd.Timedelta(lead_time, unit="h")
self.inters = list(pd.date_range(inputs[-1], target, freq=dt))
self._ctimes = deepcopy(self.inters)
self.stat_times = deepcopy(self.inters)
self.stat_times.pop(-1)
self._ctimes.pop(0)
self.inters.pop(0)
self.inters.pop(-1)
self.times = [*inputs, *self.inters, target]
self.targets = self.times[2:]
self.nsteps = len(self.times) - 2
@property
def climatology_info(self) -> dict[pd.Timestamp, tuple[int, int]]:
"""Returns information required to obtain climatology data.
Returns:
list: list containing required climatology info.
"""
return [(min(t.dayofyear, 365), t.hour) for t in self._ctimes]
def _info_str(self) -> str:
iso_8601 = "%Y-%m-%dT%H:%M:%S"
inter_str = "\n".join(t.strftime(iso_8601) for t in self.inters)
return (
f"Issue time: {self.inputs[1].strftime(iso_8601)}\n"
f"Lead time: {self.lead_time} hours ahead\n"
f"Target time: {self.target.strftime(iso_8601)}\n"
f"Intermediate times: {inter_str}"
)
@classmethod
def get(cls, timestamp: pd.Timestamp, lead_time: int, nsteps: int):
"""Given a timestamp and lead time, generates a RolloutSpec object
describing the sample further.
Args:
timestamp: Timstamp (issue time) of the sample.
lead_time: Lead time. In hours.
Returns:
SampleSpec object.
"""
if lead_time > 0:
dt = pd.to_timedelta(lead_time, unit="h")
timestamp_target = timestamp + nsteps * dt
else:
raise ValueError("Rollout is only forwards")
spec = cls(
inputs=(timestamp - dt, timestamp),
lead_time=lead_time,
target=timestamp_target,
)
return spec
def __repr__(self) -> str:
return self._info_str()
def __str__(self) -> str:
return self._info_str()
class Merra2RolloutDataset(Merra2Dataset):
"""Dataset class that read MERRA2 data for performing rollout.
Implementation details::
Samples stores the list of valid samples. This takes the form
```
[
[(timestamp 1, -input_time, n_steps)],
[(timestamp 2, -input_time, n_steps)],
]
```
The nested list is for compatibility reasons with Merra2Dataset. Note
that input time and n_steps are always the same value. For some reason
the sign of input_time is the opposite to that in Merra2Dataset
"""
input_time_len = 2
def __init__(
self,
time_range: tuple[str | pd.Timestamp, str | pd.Timestamp],
input_time: int | float | pd.Timedelta,
lead_time: int | float,
data_path_surface: str | Path,
data_path_vertical: str | Path,
climatology_path_surface: str | Path | None,
climatology_path_vertical: str | Path | None,
surface_vars: list[str],
static_surface_vars: list[str],
vertical_vars: list[str],
levels: list[float],
roll_longitudes: int = 0,
positional_encoding: str = "absolute",
):
"""
Args:
time_range: time range to consider when building dataset
input_time: requested time between inputs
lead_time: requested time to predict
data_path_surface: path of surface data directory
data_path_vertical: path of vertical data directory
climatology_path_surface: path of surface climatology data
directory
climatology_path_vertical: path of vertical climatology data
directory
surface_vars: surface variables to return
static_surface_vars: static surface variables to return
vertical_vars: vertical variables to return
levels: MERA2 vertical levels to consider
roll_longitudes: Whether and now uch to randomly roll latitudes by.
Defaults to 0.
positional_encoding: The type of possitional encodeing to use.
Defaults to "absolute".
Raises:
ValueError: If lead time is not integer multiple of input time
"""
self._target_lead = lead_time
if isinstance(input_time, int) or isinstance(input_time, float):
self.timedelta_input = pd.to_timedelta(-input_time, unit="h")
else:
self.timedelta_input = -input_time
lead_times = [self.timedelta_input / pd.to_timedelta(1, unit="h")]
super().__init__(
time_range,
lead_times,
[input_time],
data_path_surface,
data_path_vertical,
climatology_path_surface,
climatology_path_vertical,
surface_vars,
static_surface_vars,
vertical_vars,
levels,
roll_longitudes,
positional_encoding,
)
nstep_float = (
pd.to_timedelta(self._target_lead, unit="h") / self.timedelta_input
)
if abs(nstep_float % 1) > 1e-5:
raise ValueError("Leadtime not multiple of input time")
self.nsteps = round(nstep_float)
@ft.cached_property
def samples(self) -> list[tuple[pd.Timestamp, int, int]]:
"""Generates list of all valid samlpes.
Returns:
List of tuples (timestamp, input time, lead time).
"""
valid_samples = []
for timestamp in sorted(self.valid_timestamps):
timestamp_samples = []
for lt in self.lead_times:
spec = RolloutSpec.get(timestamp, lt, self.nsteps)
if self._data_available(spec):
timestamp_samples.append(
(timestamp, self.input_times[0], lt, self.nsteps)
)
if timestamp_samples:
valid_samples.append(timestamp_samples)
return valid_samples
def get_data_from_rollout_spec(
self, spec: RolloutSpec
) -> dict[str, Tensor | int | float]:
"""Loads and assembles sample data given a RolloutSpec object.
Args:
spec (RolloutSpec): Full details regarding the data to be loaded
Returns:
dict: Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',c'lead_time',
'input_time'. For each, the value is as follows::
{
'sur_static': Torch tensor of shape [parameter, lat, lon]. For
each pixel (lat, lon), the first 7 dimensions index sin(lat),
cos(lon), sin(lon), cos(doy), sin(doy), cos(hod), sin(hod).
Where doy is the day of the year [1, 366] and hod the hour of
the day [0, 23].
'sur_vals': Torch tensor of shape [parameter, time, lat, lon].
'sur_tars': Torch tensor of shape [parameter, time, lat, lon].
'ulv_vals': Torch tensor of shape
[parameter, level, time, lat, lon].
'ulv_tars': Torch tensor of shape
[nsteps, parameter, level, time, lat, lon].
'sur_climate': Torch tensor of shape
[nsteps, parameter, lat, lon].
'ulv_climate': Torch tensor of shape
[nsteps, paramter, level, lat, lon].
'lead_time': Float.
'input_time': Float.
}
"""
# We assemble the unique timestamps for which we need data.
vals_required = {*spec.times}
stat_required = {*spec.stat_times}
# We assemble the unique data files from which we need value data
vals_file_map = defaultdict(list)
for t in vals_required:
data_files = (
self.data_file_surface(t),
self.data_file_vertical(t),
)
vals_file_map[data_files].append(t)
# We assemble the unique data files from which we need static data
stat_file_map = defaultdict(list)
for t in stat_required:
data_files = (
self.data_file_surface(t),
self.data_file_vertical(t),
)
stat_file_map[data_files].append(t)
# Load the value data
data = {}
for data_files, times in vals_file_map.items():
for time in times:
data[time] = self._read_data(data_files, time)
# Load the static data
stat = {}
for data_files, times in stat_file_map.items():
for time in times:
hod, doy = time.hour, time.dayofyear
stat[time] = self._read_static_data(data_files[0], hod, doy)
# Combine times
sample_data = {}
input_upl = np.stack([data[t]["vert"] for t in spec.inputs], axis=2)
sample_data["ulv_vals"] = input_upl
target_upl = np.stack([data[t]["vert"] for t in spec.targets], axis=2)
sample_data["ulv_tars"] = target_upl
input_sur = np.stack([data[t]["surf"] for t in spec.inputs], axis=1)
sample_data["sur_vals"] = input_sur
target_sur = np.stack([data[t]["surf"] for t in spec.targets], axis=1)
sample_data["sur_tars"] = target_sur
# Load the static data
static = np.stack([stat[t] for t in spec.stat_times], axis=0)
sample_data["sur_static"] = static
# If required load the climate data
if self._require_clim:
clim_data = {}
for ci in spec.climatology_info:
ci_year, ci_hour = ci
surf_file = self.data_file_surface_climate(
dayofyear=ci_year,
hourofday=ci_hour,
)
vert_file = self.data_file_vertical_climate(
dayofyear=ci_year,
hourofday=ci_hour,
)
clim_data[ci] = self._read_climate((surf_file, vert_file))
clim_surf = [clim_data[ci]["surf"] for ci in spec.climatology_info]
sample_data["sur_climate"] = np.stack(clim_surf, axis=0)
clim_surf = [clim_data[ci]["vert"] for ci in spec.climatology_info]
sample_data["ulv_climate"] = np.stack(clim_surf, axis=0)
# Move the data from numpy to torch
sample_data = self._to_torch(sample_data, dtype=self.dtype)
# Optionally roll
if len(self._roll_longitudes) > 0:
roll_by = random.choice(self._roll_longitudes)
sample_data = self._lat_roll(sample_data, roll_by)
# Now that we have rolled, we can add the static data
lt = torch.tensor([spec.lead_time] * self.nsteps).to(self.dtype)
sample_data["lead_time"] = lt
sample_data["input_time"] = spec.input_time
return sample_data
def get_data(
self, timestamp: pd.Timestamp, *args, **kwargs
) -> dict[Tensor | int]:
"""Loads data based on timestamp and lead time.
Args:
timestamp: Timestamp.
Returns:
Dictionary with keys 'sur_static', 'sur_vals', 'sur_tars',
'ulv_vals', 'ulv_tars', 'sur_climate', 'ulv_climate',
'lead_time', 'input_time'
"""
rollout_spec = RolloutSpec.get(
timestamp, self.lead_times[0], self.nsteps
)
sample_data = self.get_data_from_rollout_spec(rollout_spec)
return sample_data
|