Spaces:
Running
Running
update
Browse files
toolbox/torchaudio/models/frcrn/inference_frcrn.py
CHANGED
@@ -61,7 +61,9 @@ class InferenceFRCRN(object):
|
|
61 |
|
62 |
# noisy_audio shape: [batch_size, n_samples]
|
63 |
enhanced_audio = self.enhancement_by_tensor(noisy_audio)
|
64 |
-
#
|
|
|
|
|
65 |
return enhanced_audio.cpu().numpy()
|
66 |
|
67 |
def enhancement_by_tensor(self, noisy_audio: torch.Tensor) -> torch.Tensor:
|
@@ -79,8 +81,7 @@ class InferenceFRCRN(object):
|
|
79 |
# shape: [batch_size, 1, num_samples]
|
80 |
|
81 |
enhanced_audio = enhanced_audio[0]
|
82 |
-
|
83 |
-
# enhanced_audio shape: [channels, num_samples]
|
84 |
return enhanced_audio
|
85 |
|
86 |
|
|
|
61 |
|
62 |
# noisy_audio shape: [batch_size, n_samples]
|
63 |
enhanced_audio = self.enhancement_by_tensor(noisy_audio)
|
64 |
+
# enhanced_audio shape: [channels, num_samples]
|
65 |
+
enhanced_audio = enhanced_audio[0]
|
66 |
+
# enhanced_audio shape: [num_samples]
|
67 |
return enhanced_audio.cpu().numpy()
|
68 |
|
69 |
def enhancement_by_tensor(self, noisy_audio: torch.Tensor) -> torch.Tensor:
|
|
|
81 |
# shape: [batch_size, 1, num_samples]
|
82 |
|
83 |
enhanced_audio = enhanced_audio[0]
|
84 |
+
# shape: [channels, num_samples]
|
|
|
85 |
return enhanced_audio
|
86 |
|
87 |
|
toolbox/torchaudio/models/mpnet/inference_mpnet.py
CHANGED
@@ -60,7 +60,9 @@ class InferenceMPNet(object):
|
|
60 |
|
61 |
# noisy_audio shape: [batch_size, n_samples]
|
62 |
enhanced_audio = self.enhancement_by_tensor(noisy_audio)
|
63 |
-
#
|
|
|
|
|
64 |
return enhanced_audio.cpu().numpy()
|
65 |
|
66 |
def enhancement_by_tensor(self, noisy_audio: torch.Tensor) -> torch.Tensor:
|
@@ -81,7 +83,12 @@ class InferenceMPNet(object):
|
|
81 |
)
|
82 |
enhanced_audio = audio_g.detach()
|
83 |
|
|
|
|
|
|
|
|
|
84 |
enhanced_audio = enhanced_audio[0]
|
|
|
85 |
return enhanced_audio
|
86 |
|
87 |
|
|
|
60 |
|
61 |
# noisy_audio shape: [batch_size, n_samples]
|
62 |
enhanced_audio = self.enhancement_by_tensor(noisy_audio)
|
63 |
+
# enhanced_audio shape: [channels, num_samples]
|
64 |
+
enhanced_audio = enhanced_audio[0]
|
65 |
+
# enhanced_audio shape: [num_samples]
|
66 |
return enhanced_audio.cpu().numpy()
|
67 |
|
68 |
def enhancement_by_tensor(self, noisy_audio: torch.Tensor) -> torch.Tensor:
|
|
|
83 |
)
|
84 |
enhanced_audio = audio_g.detach()
|
85 |
|
86 |
+
# shape: [batch_size, num_samples]
|
87 |
+
enhanced_audio = torch.unsqueeze(enhanced_audio, dim=1)
|
88 |
+
# shape: [batch_size, 1, num_samples]
|
89 |
+
|
90 |
enhanced_audio = enhanced_audio[0]
|
91 |
+
# shape: [channels, num_samples]
|
92 |
return enhanced_audio
|
93 |
|
94 |
|