File size: 1,817 Bytes
cba47e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/modelscope/modelscope/blob/master/modelscope/models/audio/ans/layers/uni_deep_fsmn.py
https://huggingface.co/spaces/alibabasglab/ClearVoice/blob/main/models/mossformer2_se/fsmn.py
"""
import torch
import torch.nn as nn
import torch.nn.functional as F


class UniDeepFsmn(nn.Module):

    def __init__(self,
                 input_dim: int,
                 hidden_size: int,
                 lorder: int = 1,
                 ):
        super(UniDeepFsmn, self).__init__()
        self.input_dim = input_dim
        self.hidden_size = hidden_size
        self.lorder = lorder

        self.linear = nn.Linear(input_dim, hidden_size)
        self.project = nn.Linear(hidden_size, input_dim, bias=False)
        self.conv1 = nn.Conv2d(
            input_dim,
            input_dim,
            kernel_size=(lorder, 1),
            stride=(1, 1),
            groups=input_dim,
            bias=False
        )

    def forward(self, inputs: torch.Tensor):
        """
        :param inputs: torch.Tensor, shape: [b, t, h]
        :return: torch.Tensor, shape: [b, t, h]
        """
        x = F.relu(self.linear(inputs))
        x = self.project(x)
        x = torch.unsqueeze(x, 1)
        # x shape: [b, 1, t, h]

        x = x.permute(0, 3, 2, 1)
        # x shape: [b, h, t, 1]
        y = F.pad(x, [0, 0, self.lorder - 1, 0])

        x = x + self.conv1(y)
        x = x.permute(0, 3, 2, 1)
        # x shape: [b, 1, t, h]
        x = x.squeeze()

        result = inputs + x
        return result


def main():
    x = torch.rand(size=(1, 200, 32))
    fsmn = UniDeepFsmn(
        input_dim=32,
        hidden_size=64,
        lorder=3,
    )
    result = fsmn.forward(x)
    print(result.shape)
    return


if __name__ == "__main__":
    main()