Maharshi Gor
Updated workflow APIs, code clean up and minor functions for hf pipeline support
f064c62
# %%
import json
from abc import ABC, abstractmethod
from typing import Literal
import gradio as gr
import yaml
from loguru import logger
from pydantic import BaseModel, ValidationError
from app_configs import UNSELECTED_VAR_NAME
from components import typed_dicts as td
from components import utils
from components.structs import ModelStepUIState, PipelineState, PipelineUIState, TossupPipelineState
from envs import DOCS_REPO_URL, DOCS_URL
from shared.workflows.factory import create_new_llm_step
from shared.workflows.structs import Buzzer, BuzzerMethod, ModelStep, TossupWorkflow, Workflow
def get_output_panel_state(workflow: Workflow) -> dict:
state = {
"variables": workflow.get_available_variables(),
"models": workflow.get_step_model_selections(),
"output_models": workflow.get_output_model_selections(),
}
if isinstance(workflow, TossupWorkflow):
state["buzzer"] = workflow.buzzer.model_dump(exclude_defaults=False)
return state
def strict_model_validate(model_cls: type[BaseModel], data: dict):
# Dynamically create a subclass with extra='forbid'
class_name = model_cls.__name__
strict_class_name = f"Strict{class_name}"
strict_class = type(
strict_class_name,
(model_cls,),
{"model_config": {**getattr(model_cls, "model_config", {}), "extra": "forbid"}},
)
return strict_class.model_validate(data)
class BasePipelineValidator(ABC):
"""Abstract base class for pipeline validators."""
@abstractmethod
def __call__(self, workflow: Workflow):
"""
Validate the workflow.
Args:
workflow: The workflow to validate.
Raises:
ValueError: If the workflow is invalid.
"""
pass
class PipelineStateManager:
"""Manages a pipeline of multiple steps."""
pipeline_state_cls = PipelineState
workflow_cls = Workflow
def __init__(self, validator: BasePipelineValidator | None = None):
self.validator = validator
def make_pipeline_state(self, state_dict: td.PipelineStateDict) -> PipelineState:
"""Make a state from a state dictionary."""
return self.pipeline_state_cls(**state_dict)
def create_pipeline_state_dict(self, workflow: Workflow, ui_state: PipelineUIState) -> td.PipelineStateDict:
"""Create a pipeline state from a workflow."""
return self.pipeline_state_cls(workflow=workflow, ui_state=ui_state).model_dump()
def add_step(
self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int = -1, name=""
) -> td.PipelineStateDict:
"""Create a new step and return its state."""
state = self.make_pipeline_state(state_dict)
step_id = state.get_new_step_id()
step_name = name or f"Step {state.n_steps + 1}"
new_step = create_new_llm_step(step_id=step_id, name=step_name)
state = state.insert_step(position, new_step)
return state.model_dump(), not pipeline_change
def remove_step(
self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int
) -> td.PipelineStateDict:
"""Remove a step from the pipeline."""
state = self.make_pipeline_state(state_dict)
if 0 <= position < state.n_steps:
state = state.remove_step(position)
else:
raise ValueError(f"Invalid step position: {position}")
return state.model_dump(), not pipeline_change
def _move_step(
self, state_dict: td.PipelineStateDict, position: int, direction: Literal["up", "down"]
) -> tuple[td.PipelineStateDict, bool]:
state = self.make_pipeline_state(state_dict)
old_order = list(state.ui_state.step_ids)
utils.move_item(state.ui_state.step_ids, position, direction)
return state.model_dump(), old_order != list(state.ui_state.step_ids)
def move_up(self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int) -> td.PipelineStateDict:
"""Move a step up in the pipeline."""
new_state_dict, change = self._move_step(state_dict, position, "up")
if change:
pipeline_change = not pipeline_change
return new_state_dict, pipeline_change
def move_down(self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int) -> td.PipelineStateDict:
"""Move a step down in the pipeline."""
new_state_dict, change = self._move_step(state_dict, position, "down")
if change:
pipeline_change = not pipeline_change
return new_state_dict, pipeline_change
def update_model_step_state(
self, state_dict: td.PipelineStateDict, model_step: ModelStep, ui_state: ModelStepUIState
) -> td.PipelineStateDict:
"""Update a particular model step in the pipeline."""
state = self.make_pipeline_state(state_dict)
state = state.update_step(model_step, ui_state)
return state.model_dump()
def update_output_variables(
self, state_dict: td.PipelineStateDict, target: str, produced_variable: str
) -> td.PipelineStateDict:
if produced_variable == UNSELECTED_VAR_NAME:
produced_variable = None
"""Update the output variables for a step."""
state = self.make_pipeline_state(state_dict)
state = state.update_output_variable(target, produced_variable)
return state.model_dump()
def update_model_step_ui(
self, state_dict: td.PipelineStateDict, step_ui: ModelStepUIState, step_id: str
) -> td.PipelineStateDict:
"""Update a step in the pipeline."""
state = self.make_pipeline_state(state_dict)
state.ui_state.steps[step_id] = step_ui.model_copy()
return state.model_dump()
def get_all_variables(self, state_dict: td.PipelineStateDict, model_step_id: str | None = None) -> list[str]:
"""Get all variables from all steps."""
return self.make_pipeline_state(state_dict)
def parse_yaml_workflow(self, yaml_str: str, strict: bool = True) -> Workflow:
"""Parse a YAML workflow."""
workflow = yaml.safe_load(yaml_str)
try:
if strict:
return strict_model_validate(self.workflow_cls, workflow)
else:
return self.workflow_cls.model_validate(workflow)
except ValidationError as e:
new_exception = ValidationError.from_exception_data(
e.title.removeprefix("Strict"), e.errors(), input_type="json"
)
raise new_exception from e
def create_pipeline_error_response(self, e: Exception) -> str:
"""Format error messages for pipeline parsing errors with consistent styling."""
error_template = """
<div class="md" style='color: #FF0000; background-color: #FFEEEE; padding: 10px; border-radius: 5px; border-left: 4px solid #FF0000;'>
<strong style='color: #FF0000;'>{error_type}:</strong> <br>
<div class="code-wrap">
<pre><code>{error_message}</code></pre>
</div>
{help_text}
</div>
"""
if isinstance(e, yaml.YAMLError):
error_type = "Invalid YAML Error"
help_text = "Refer to the <a href='https://spacelift.io/blog/yaml#basic-yaml-syntax' target='_blank'>YAML schema</a> for correct formatting."
elif isinstance(e, ValidationError):
error_type = "Pipeline Parsing Error"
help_text = f"Refer to the <a href='{DOCS_URL}/pipeline-schema.md' target='_blank'>documentation</a> for the correct pipeline schema."
elif isinstance(e, ValueError):
error_type = "Pipeline Validation Error"
help_text = f"Refer to the <a href='{DOCS_URL}/pipeline-schema.md' target='_blank'>documentation</a> for the correct pipeline schema."
else:
error_type = "Unexpected Error"
help_text = (
f"Please report this issue to us at <a href='{DOCS_REPO_URL}/issues' target='_blank'>GitHub Issues</a>."
)
return error_template.format(error_type=error_type, error_message=str(e), help_text=help_text)
def get_formatted_config(
self, state_dict: td.PipelineStateDict, format: Literal["json", "yaml"] = "yaml"
) -> tuple[str, dict]:
"""Get the full pipeline configuration."""
try:
state = self.make_pipeline_state(state_dict)
config = state.workflow.model_dump(exclude_defaults=True)
if isinstance(state.workflow, TossupWorkflow):
buzzer_config = state.workflow.buzzer.model_dump(exclude_defaults=False)
config["buzzer"] = buzzer_config
if format == "yaml":
config_str = yaml.dump(config, default_flow_style=False, sort_keys=False, indent=4)
else:
config_str = json.dumps(config, indent=4, sort_keys=False)
return config_str, gr.update(visible=False)
except Exception as e:
error_message = self.create_pipeline_error_response(e)
return gr.skip(), gr.update(value=error_message, visible=True)
def update_workflow_from_code(self, yaml_str: str, change_state: bool) -> tuple[td.PipelineStateDict, bool, dict]:
"""Update a workflow from a YAML string."""
try:
workflow = self.parse_yaml_workflow(yaml_str, strict=True)
self.validator and self.validator(workflow)
state = self.pipeline_state_cls.from_workflow(workflow)
return state.model_dump(), not change_state, gr.update(visible=False)
except Exception as e:
error_message = self.create_pipeline_error_response(e)
return gr.skip(), gr.skip(), gr.update(value=error_message, visible=True)
class TossupPipelineStateManager(PipelineStateManager):
"""Manages a tossup pipeline state."""
pipeline_state_cls = TossupPipelineState
workflow_cls = TossupWorkflow
def make_pipeline_state(self, state_dict: td.PipelineStateDict) -> TossupPipelineState:
return super().make_pipeline_state(state_dict)
def create_pipeline_state_dict(
self, workflow: TossupWorkflow, ui_state: PipelineUIState
) -> td.TossupPipelineStateDict:
return super().create_pipeline_state_dict(workflow, ui_state)
def update_workflow_from_code(
self, yaml_str: str, change_state: bool
) -> tuple[td.TossupPipelineStateDict, bool, dict]:
return super().update_workflow_from_code(yaml_str, change_state)
def update_model_step_state(
self, state_dict: td.TossupPipelineStateDict, model_step: ModelStep, ui_state: ModelStepUIState
) -> td.TossupPipelineStateDict:
return super().update_model_step_state(state_dict, model_step, ui_state)
def update_output_variables(
self, state_dict: td.TossupPipelineStateDict, target: str, produced_variable: str
) -> td.TossupPipelineStateDict:
return super().update_output_variables(state_dict, target, produced_variable)
def update_buzzer(
self,
state_dict: td.TossupPipelineStateDict,
confidence_threshold: float,
method: str,
tokens_prob: float | None,
) -> td.TossupPipelineStateDict:
"""Update the buzzer."""
state = self.make_pipeline_state(state_dict)
prob_threshold = float(tokens_prob) if tokens_prob and tokens_prob > 0 else None
if method == BuzzerMethod.OR and prob_threshold is None:
prob_threshold = 0.0
state.workflow.buzzer = Buzzer(
method=method, confidence_threshold=confidence_threshold, prob_threshold=prob_threshold
)
return state.model_dump()