Spaces:
Runtime error
Runtime error
import json | |
import os | |
import pandas as pd | |
from display.formatting import make_clickable_model | |
from display.utils_old import EvalQueueColumn | |
def get_leaderboard_df(results_path: str) -> pd.DataFrame: | |
model_result_filepaths = [] | |
for root, _, files in os.walk(results_path): | |
if len(files) == 0 or not all(f.endswith(".json") for f in files): | |
continue | |
for file in files: | |
model_result_filepaths.append(os.path.join(root, file)) | |
eval_results = {"model": [], "buzz_accuracy": [], "win_rate_human": [], "win_rate_model": []} | |
for model_result_filepath in model_result_filepaths: | |
with open(model_result_filepath, "r") as fin: | |
model_result = json.load(fin) | |
model_id = model_result["model_id"] | |
buzz_accuracy = model_result["buzz_accuracy"] | |
win_rate_human = model_result["win_rate_human"] | |
win_rate_model = model_result["win_rate_model"] | |
eval_results["model"].append(model_id) | |
eval_results["buzz_accuracy"].append(buzz_accuracy) | |
eval_results["win_rate_human"].append(win_rate_human) | |
eval_results["win_rate_model"].append(win_rate_model) | |
return pd.DataFrame(eval_results) | |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
# TODO: This function is stale, but might be a good reference point for new implementation | |
"""Creates the different dataframes for the evaluation queues requestes""" | |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
all_evals = [] | |
for entry in entries: | |
if ".json" in entry: | |
file_path = os.path.join(save_path, entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
elif ".md" not in entry: | |
# this is a folder | |
sub_entries = [ | |
e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".") | |
] | |
for sub_entry in sub_entries: | |
file_path = os.path.join(save_path, entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
all_evals.append(data) | |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
return df_finished[cols], df_running[cols], df_pending[cols] | |