|
|
|
import json |
|
from abc import ABC, abstractmethod |
|
from typing import Literal |
|
|
|
import gradio as gr |
|
import yaml |
|
from loguru import logger |
|
from pydantic import BaseModel, ValidationError |
|
|
|
from app_configs import UNSELECTED_VAR_NAME |
|
from components import typed_dicts as td |
|
from components import utils |
|
from components.structs import ModelStepUIState, PipelineState, TossupPipelineState |
|
from envs import DOCS_REPO_BRANCH, DOCS_REPO_URL |
|
from workflows.factory import create_new_llm_step |
|
from workflows.structs import Buzzer, BuzzerMethod, ModelStep, TossupWorkflow, Workflow |
|
|
|
|
|
def get_output_panel_state(workflow: Workflow) -> dict: |
|
state = { |
|
"variables": workflow.get_available_variables(), |
|
"models": workflow.get_step_model_selections(), |
|
"output_models": workflow.get_output_model_selections(), |
|
} |
|
if isinstance(workflow, TossupWorkflow): |
|
state["buzzer"] = workflow.buzzer.model_dump(exclude_defaults=False) |
|
return state |
|
|
|
|
|
def strict_model_validate(model_cls: type[BaseModel], data: dict): |
|
|
|
class_name = model_cls.__name__ |
|
strict_class_name = f"Strict{class_name}" |
|
|
|
strict_class = type( |
|
strict_class_name, |
|
(model_cls,), |
|
{"model_config": {**getattr(model_cls, "model_config", {}), "extra": "forbid"}}, |
|
) |
|
|
|
return strict_class.model_validate(data) |
|
|
|
|
|
class BasePipelineValidator(ABC): |
|
"""Abstract base class for pipeline validators.""" |
|
|
|
@abstractmethod |
|
def __call__(self, workflow: Workflow): |
|
""" |
|
Validate the workflow. |
|
|
|
Args: |
|
workflow: The workflow to validate. |
|
|
|
Raises: |
|
ValueError: If the workflow is invalid. |
|
""" |
|
pass |
|
|
|
|
|
class PipelineStateManager: |
|
"""Manages a pipeline of multiple steps.""" |
|
|
|
pipeline_state_cls = PipelineState |
|
workflow_cls = Workflow |
|
|
|
def __init__(self, validator: BasePipelineValidator | None = None): |
|
self.validator = validator |
|
|
|
def make_pipeline_state(self, state_dict: td.PipelineStateDict) -> PipelineState: |
|
"""Make a state from a state dictionary.""" |
|
return self.pipeline_state_cls(**state_dict) |
|
|
|
def add_step( |
|
self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int = -1, name="" |
|
) -> td.PipelineStateDict: |
|
"""Create a new step and return its state.""" |
|
state = self.make_pipeline_state(state_dict) |
|
step_id = state.get_new_step_id() |
|
step_name = name or f"Step {state.n_steps + 1}" |
|
new_step = create_new_llm_step(step_id=step_id, name=step_name) |
|
state = state.insert_step(position, new_step) |
|
return state.model_dump(), not pipeline_change |
|
|
|
def remove_step( |
|
self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int |
|
) -> td.PipelineStateDict: |
|
"""Remove a step from the pipeline.""" |
|
state = self.make_pipeline_state(state_dict) |
|
if 0 <= position < state.n_steps: |
|
state = state.remove_step(position) |
|
else: |
|
raise ValueError(f"Invalid step position: {position}") |
|
return state.model_dump(), not pipeline_change |
|
|
|
def _move_step( |
|
self, state_dict: td.PipelineStateDict, position: int, direction: Literal["up", "down"] |
|
) -> tuple[td.PipelineStateDict, bool]: |
|
state = self.make_pipeline_state(state_dict) |
|
old_order = list(state.ui_state.step_ids) |
|
utils.move_item(state.ui_state.step_ids, position, direction) |
|
return state.model_dump(), old_order != list(state.ui_state.step_ids) |
|
|
|
def move_up(self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int) -> td.PipelineStateDict: |
|
"""Move a step up in the pipeline.""" |
|
new_state_dict, change = self._move_step(state_dict, position, "up") |
|
if change: |
|
pipeline_change = not pipeline_change |
|
return new_state_dict, pipeline_change |
|
|
|
def move_down( |
|
self, state_dict: td.PipelineStateDict, pipeline_change: bool, position: int |
|
) -> td.PipelineStateDict: |
|
"""Move a step down in the pipeline.""" |
|
new_state_dict, change = self._move_step(state_dict, position, "down") |
|
if change: |
|
pipeline_change = not pipeline_change |
|
return new_state_dict, pipeline_change |
|
|
|
def update_model_step_state( |
|
self, state_dict: td.PipelineStateDict, model_step: ModelStep, ui_state: ModelStepUIState |
|
) -> td.PipelineStateDict: |
|
"""Update a particular model step in the pipeline.""" |
|
state = self.make_pipeline_state(state_dict) |
|
state = state.update_step(model_step, ui_state) |
|
return state.model_dump() |
|
|
|
def update_output_variables( |
|
self, state_dict: td.PipelineStateDict, target: str, produced_variable: str |
|
) -> td.PipelineStateDict: |
|
if produced_variable == UNSELECTED_VAR_NAME: |
|
produced_variable = None |
|
"""Update the output variables for a step.""" |
|
state = self.make_pipeline_state(state_dict) |
|
state = state.update_output_variable(target, produced_variable) |
|
return state.model_dump() |
|
|
|
def update_model_step_ui( |
|
self, state_dict: td.PipelineStateDict, step_ui: ModelStepUIState, step_id: str |
|
) -> td.PipelineStateDict: |
|
"""Update a step in the pipeline.""" |
|
state = self.make_pipeline_state(state_dict) |
|
state.ui_state.steps[step_id] = step_ui.model_copy() |
|
return state.model_dump() |
|
|
|
def get_all_variables(self, state_dict: td.PipelineStateDict, model_step_id: str | None = None) -> list[str]: |
|
"""Get all variables from all steps.""" |
|
return self.make_pipeline_state(state_dict) |
|
|
|
def parse_yaml_workflow(self, yaml_str: str, strict: bool = True) -> Workflow: |
|
"""Parse a YAML workflow.""" |
|
workflow = yaml.safe_load(yaml_str) |
|
try: |
|
if strict: |
|
return strict_model_validate(self.workflow_cls, workflow) |
|
else: |
|
return self.workflow_cls.model_validate(workflow) |
|
except ValidationError as e: |
|
new_exception = ValidationError.from_exception_data( |
|
e.title.removeprefix("Strict"), e.errors(), input_type="json" |
|
) |
|
raise new_exception from e |
|
|
|
def create_pipeline_error_response(self, e: Exception) -> str: |
|
"""Format error messages for pipeline parsing errors with consistent styling.""" |
|
error_template = """ |
|
<div class="md" style='color: #FF0000; background-color: #FFEEEE; padding: 10px; border-radius: 5px; border-left: 4px solid #FF0000;'> |
|
<strong style='color: #FF0000;'>{error_type}:</strong> <br> |
|
<div class="code-wrap"> |
|
<pre><code>{error_message}</code></pre> |
|
</div> |
|
{help_text} |
|
</div> |
|
""" |
|
repo_files_url = f"{DOCS_REPO_URL}/tree/{DOCS_REPO_BRANCH}" |
|
if isinstance(e, yaml.YAMLError): |
|
error_type = "Invalid YAML Error" |
|
help_text = "Refer to the <a href='https://spacelift.io/blog/yaml#basic-yaml-syntax' target='_blank'>YAML schema</a> for correct formatting." |
|
elif isinstance(e, ValidationError): |
|
error_type = "Pipeline Parsing Error" |
|
help_text = f"Refer to the <a href='{repo_files_url}/pipeline-schema.md' target='_blank'>documentation</a> for the correct pipeline schema." |
|
elif isinstance(e, ValueError): |
|
error_type = "Pipeline Validation Error" |
|
help_text = f"Refer to the <a href='{repo_files_url}/pipeline-schema.md' target='_blank'>documentation</a> for the correct pipeline schema." |
|
else: |
|
error_type = "Unexpected Error" |
|
help_text = f"Please report this issue to us at <a href='{DOCS_REPO_URL}/issues' target='_blank'>GitHub Issues</a>." |
|
|
|
return error_template.format(error_type=error_type, error_message=str(e), help_text=help_text) |
|
|
|
def get_formatted_config( |
|
self, state_dict: td.PipelineStateDict, format: Literal["json", "yaml"] = "yaml" |
|
) -> tuple[str, dict]: |
|
"""Get the full pipeline configuration.""" |
|
try: |
|
state = self.make_pipeline_state(state_dict) |
|
config = state.workflow.model_dump(exclude_defaults=True) |
|
if isinstance(state.workflow, TossupWorkflow): |
|
buzzer_config = state.workflow.buzzer.model_dump(exclude_defaults=False) |
|
config["buzzer"] = buzzer_config |
|
if format == "yaml": |
|
config_str = yaml.dump(config, default_flow_style=False, sort_keys=False, indent=4) |
|
else: |
|
config_str = json.dumps(config, indent=4, sort_keys=False) |
|
return config_str, gr.update(visible=False) |
|
except Exception as e: |
|
error_message = self.create_pipeline_error_response(e) |
|
return gr.skip(), gr.update(value=error_message, visible=True) |
|
|
|
def update_workflow_from_code(self, yaml_str: str, change_state: bool) -> tuple[td.PipelineStateDict, bool, dict]: |
|
"""Update a workflow from a YAML string.""" |
|
try: |
|
workflow = self.parse_yaml_workflow(yaml_str, strict=True) |
|
self.validator and self.validator(workflow) |
|
state = self.pipeline_state_cls.from_workflow(workflow) |
|
return state.model_dump(), not change_state, gr.update(visible=False) |
|
except Exception as e: |
|
error_message = self.create_pipeline_error_response(e) |
|
return gr.skip(), gr.skip(), gr.update(value=error_message, visible=True) |
|
|
|
|
|
class TossupPipelineStateManager(PipelineStateManager): |
|
"""Manages a tossup pipeline state.""" |
|
|
|
pipeline_state_cls = TossupPipelineState |
|
workflow_cls = TossupWorkflow |
|
|
|
def make_pipeline_state(self, state_dict: td.PipelineStateDict) -> TossupPipelineState: |
|
return super().make_pipeline_state(state_dict) |
|
|
|
def update_workflow_from_code( |
|
self, yaml_str: str, change_state: bool |
|
) -> tuple[td.TossupPipelineStateDict, bool, dict]: |
|
return super().update_workflow_from_code(yaml_str, change_state) |
|
|
|
def update_model_step_state( |
|
self, state_dict: td.TossupPipelineStateDict, model_step: ModelStep, ui_state: ModelStepUIState |
|
) -> td.TossupPipelineStateDict: |
|
return super().update_model_step_state(state_dict, model_step, ui_state) |
|
|
|
def update_output_variables( |
|
self, state_dict: td.TossupPipelineStateDict, target: str, produced_variable: str |
|
) -> td.TossupPipelineStateDict: |
|
return super().update_output_variables(state_dict, target, produced_variable) |
|
|
|
def update_buzzer( |
|
self, |
|
state_dict: td.TossupPipelineStateDict, |
|
confidence_threshold: float, |
|
method: str, |
|
tokens_prob: float | None, |
|
) -> td.TossupPipelineStateDict: |
|
"""Update the buzzer.""" |
|
state = self.make_pipeline_state(state_dict) |
|
prob_threshold = float(tokens_prob) if tokens_prob and tokens_prob > 0 else None |
|
if method == BuzzerMethod.OR and prob_threshold is None: |
|
prob_threshold = 0.0 |
|
state.workflow.buzzer = Buzzer( |
|
method=method, confidence_threshold=confidence_threshold, prob_threshold=prob_threshold |
|
) |
|
return state.model_dump() |
|
|