File size: 19,143 Bytes
b9c0bac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
"""gr.Leaderboard() component"""
from __future__ import annotations
import warnings
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Tuple, Union
import pandas as pd
import semantic_version
from gradio.components import Component
from gradio.data_classes import GradioModel
from gradio.events import Events
from pandas.api.types import (
is_bool_dtype,
is_numeric_dtype,
is_object_dtype,
is_string_dtype,
)
from pandas.io.formats.style import Styler
@dataclass
class SearchColumns:
primary_column: str
secondary_columns: Optional[List[str]]
label: Optional[str] = None
placeholder: Optional[str] = None
@dataclass
class SelectColumns:
default_selection: Optional[list[str]] = field(default_factory=list)
cant_deselect: Optional[list[str]] = field(default_factory=list)
allow: bool = True
label: Optional[str] = None
show_label: bool = True
info: Optional[str] = None
@dataclass
class ColumnFilter:
column: str
type: Literal["slider", "dropdown", "checkboxgroup", "boolean"] = None
default: Optional[Union[int, float, List[Tuple[str, str]]]] = None
choices: Optional[Union[int, float, List[Tuple[str, str]]]] = None
label: Optional[str] = None
info: Optional[str] = None
show_label: bool = True
min: Optional[Union[int, float]] = None
max: Optional[Union[int, float]] = None
class DataframeData(GradioModel):
headers: List[str]
data: Union[List[List[Any]], List[Tuple[Any, ...]]]
metadata: Optional[Dict[str, Optional[List[Any]]]] = None
class Leaderboard(Component):
"""
This component displays a table of value spreadsheet-like component. Can be used to display data as an output component, or as an input to collect data from the user.
Demos: filter_records, matrix_transpose, tax_calculator, sort_records
"""
EVENTS = [Events.change, Events.input, Events.select]
data_model = DataframeData
def __init__(
self,
value: pd.DataFrame | None = None,
*,
datatype: str | list[str] = "str",
search_columns: list[str] | SearchColumns | None = None,
select_columns: list[str] | SelectColumns | None = None,
filter_columns: list[str | ColumnFilter] | None = None,
bool_checkboxgroup_label: str | None = None,
hide_columns: list[str] | None = None,
latex_delimiters: list[dict[str, str | bool]] | None = None,
label: str | None = None,
show_label: bool | None = None,
every: float | None = None,
height: int = 500,
scale: int | None = None,
min_width: int = 160,
interactive: bool | None = None,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
wrap: bool = False,
line_breaks: bool = True,
column_widths: list[str | int] | None = None,
):
"""
Parameters:
value: Default value to display in the DataFrame. Must be a pandas DataFrame.
datatype: Datatype of values in sheet. Can be provided per column as a list of strings, or for the entire sheet as a single string. Valid datatypes are "str", "number", "bool", "date", and "markdown".
search_columns: See Configuration section of docs for details.
select_columns: See Configuration section of docs for details.
filter_columns: See Configuration section of docs for details.
bool_checkboxgroup_label: Label for the checkboxgroup filter for boolean columns.
hide_columns: List of columns to hide by default. They will not be displayed in the table but they can still be used for searching, filtering.
label: The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
latex_delimiters: A list of dicts of the form {"left": open delimiter (str), "right": close delimiter (str), "display": whether to display in newline (bool)} that will be used to render LaTeX expressions. If not provided, `latex_delimiters` is set to `[{ "left": "$$", "right": "$$", "display": True }]`, so only expressions enclosed in $$ delimiters will be rendered as LaTeX, and in a new line. Pass in an empty list to disable LaTeX rendering. For more information, see the [KaTeX documentation](https://katex.org/docs/autorender.html). Only applies to columns whose datatype is "markdown".
label: The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
show_label: if True, will display label.
every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
height: The maximum height of the dataframe, specified in pixels if a number is passed, or in CSS units if a string is passed. If more rows are created than can fit in the height, a scrollbar will appear.
scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
interactive: if True, will allow users to edit the dataframe; if False, can only be used to display data. If not provided, this is inferred based on whether the component is used as an input or output.
visible: If False, component will be hidden.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
wrap: If True, the text in table cells will wrap when appropriate. If False and the `column_width` parameter is not set, the column widths will expand based on the cell contents and the table may need to be horizontally scrolled. If `column_width` is set, then any overflow text will be hidden.
line_breaks: If True (default), will enable Github-flavored Markdown line breaks in chatbot messages. If False, single new lines will be ignored. Only applies for columns of type "markdown."
column_widths: An optional list representing the width of each column. The elements of the list should be in the format "100px" (ints are also accepted and converted to pixel values) or "10%". If not provided, the column widths will be automatically determined based on the content of the cells. Setting this parameter will cause the browser to try to fit the table within the page width.
"""
if value is None:
raise ValueError("Leaderboard component must have a value set.")
self.wrap = wrap
self.headers = [str(s) for s in value.columns]
self.datatype = datatype
self.search_columns = self._get_search_columns(search_columns)
self.bool_checkboxgroup_label = bool_checkboxgroup_label
self.select_columns_config = self._get_select_columns(select_columns, value)
self.filter_columns = self._get_column_filter_configs(filter_columns, value)
self.raise_error_if_incorrect_config()
self.hide_columns = hide_columns or []
self.col_count = (len(self.headers), "fixed")
if isinstance(value, Styler):
self.row_count = (value.data.shape[0], "fixed")
else:
self.row_count = (value.shape[0], "fixed")
if latex_delimiters is None:
latex_delimiters = [{"left": "$$", "right": "$$", "display": True}]
self.latex_delimiters = latex_delimiters
self.height = height
self.line_breaks = line_breaks
self.column_widths = [w if isinstance(w, str) else f"{w}px" for w in (column_widths or [])]
super().__init__(
label=label,
every=every,
show_label=show_label,
scale=scale,
min_width=min_width,
interactive=interactive,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
value=value,
)
def raise_error_if_incorrect_config(self):
for col in [self.search_columns.primary_column, *self.search_columns.secondary_columns]:
if col not in self.headers:
raise ValueError(f"Column '{col}' not found in the DataFrame headers.")
for col in self.select_columns_config.default_selection + self.select_columns_config.cant_deselect:
if col not in self.headers:
raise ValueError(f"Column '{col}' not found in the DataFrame headers.")
for col in [col.column for col in self.filter_columns]:
if col not in self.headers:
raise ValueError(f"Column '{col}' not found in the DataFrame headers.")
@staticmethod
def _get_best_filter_type(
column: str, value: pd.DataFrame
) -> Literal["slider", "checkboxgroup", "dropdown", "checkbox"]:
if is_bool_dtype(value[column]):
return "checkbox"
if is_numeric_dtype(value[column]):
return "slider"
if is_string_dtype(value[column]) or is_object_dtype(value[column]):
return "checkboxgroup"
warnings.warn(
f"{column}'s type is not numeric or string, defaulting to checkboxgroup filter type.",
UserWarning,
)
return "checkboxgroup"
@staticmethod
def _get_column_filter_configs(columns: list[str | ColumnFilter] | None, value: pd.DataFrame) -> list[ColumnFilter]:
if columns is None:
return []
if not isinstance(columns, list):
raise ValueError("Columns must be a list of strings or ColumnFilter objects")
return [Leaderboard._get_column_filter_config(column, value) for column in columns]
@staticmethod
def _get_column_filter_config(column: str | ColumnFilter, value: pd.DataFrame):
column_name = column if isinstance(column, str) else column.column
best_filter_type = Leaderboard._get_best_filter_type(column_name, value)
min_val = None
max_val = None
if best_filter_type == "slider":
default = [
value[column_name].quantile(0.25),
value[column_name].quantile(0.70),
]
min_val = value[column_name].min()
max_val = value[column_name].max()
choices = None
elif best_filter_type == "checkbox":
default = False
choices = None
else:
default = value[column_name].unique().tolist()
default = [(s, s) for s in default]
choices = default
if isinstance(column, ColumnFilter):
if column.type == "boolean":
column.type = "checkbox"
if not column.type:
column.type = best_filter_type
if column.default is None:
column.default = default
if not column.choices:
column.choices = choices
if min_val is not None and max_val is not None:
column.min = min_val
column.max = max_val
return column
if isinstance(column, str):
return ColumnFilter(
column=column,
type=best_filter_type,
default=default,
choices=choices,
min=min_val,
max=max_val,
)
raise ValueError(f"Columns {column} must be a string or a ColumnFilter object")
@staticmethod
def _get_search_columns(
search_columns: list[str] | SearchColumns | None,
) -> SearchColumns:
if search_columns is None:
return SearchColumns(primary_column=None, secondary_columns=[])
if isinstance(search_columns, SearchColumns):
return search_columns
if isinstance(search_columns, list):
return SearchColumns(primary_column=search_columns[0], secondary_columns=search_columns[1:])
raise ValueError("search_columns must be a list of strings or a SearchColumns object")
@staticmethod
def _get_select_columns(
select_columns: list[str] | SelectColumns | None,
value: pd.DataFrame,
) -> SelectColumns:
if select_columns is None:
return SelectColumns(allow=False)
if isinstance(select_columns, SelectColumns):
if not select_columns.default_selection:
select_columns.default_selection = value.columns.tolist()
return select_columns
if isinstance(select_columns, list):
return SelectColumns(default_selection=select_columns, allow=True)
raise ValueError("select_columns must be a list of strings or a SelectColumns object")
def get_config(self):
return {
"row_count": self.row_count,
"col_count": self.col_count,
"headers": self.headers,
"select_columns_config": self.select_columns_config,
**super().get_config(),
}
def preprocess(self, payload: DataframeData) -> pd.DataFrame:
"""
Parameters:
payload: the uploaded spreadsheet data as an object with `headers` and `data` attributes
Returns:
Passes the uploaded spreadsheet data as a `pandas.DataFrame`, `numpy.array`, `polars.DataFrame`, or native 2D Python `list[list]` depending on `type`
"""
import pandas as pd
if payload.headers is not None:
return pd.DataFrame(
[] if payload.data == [[]] else payload.data,
columns=payload.headers,
)
else:
return pd.DataFrame(payload.data)
def postprocess(self, value: pd.DataFrame) -> DataframeData:
"""
Parameters:
value: Expects data any of these formats: `pandas.DataFrame`, `pandas.Styler`, `numpy.array`, `polars.DataFrame`, `list[list]`, `list`, or a `dict` with keys 'data' (and optionally 'headers'), or `str` path to a csv, which is rendered as the spreadsheet.
Returns:
the uploaded spreadsheet data as an object with `headers` and `data` attributes
"""
import pandas as pd
from pandas.io.formats.style import Styler
if value is None:
return self.postprocess(pd.DataFrame({"column 1": []}))
if isinstance(value, (str, pd.DataFrame)):
if isinstance(value, str):
value = pd.read_csv(value) # type: ignore
if len(value) == 0:
return DataframeData(
headers=list(value.columns), # type: ignore
data=[[]], # type: ignore
)
return DataframeData(
headers=list(value.columns), # type: ignore
data=value.to_dict(orient="split")["data"], # type: ignore
)
elif isinstance(value, Styler):
if semantic_version.Version(pd.__version__) < semantic_version.Version("1.5.0"):
raise ValueError(
"Styler objects are only supported in pandas version 1.5.0 or higher. Please try: `pip install --upgrade pandas` to use this feature."
)
if self.interactive:
warnings.warn(
"Cannot display Styler object in interactive mode. Will display as a regular pandas dataframe instead."
)
df: pd.DataFrame = value.data # type: ignore
if len(df) == 0:
return DataframeData(
headers=list(df.columns),
data=[[]],
metadata=self.__extract_metadata(value), # type: ignore
)
return DataframeData(
headers=list(df.columns),
data=df.to_dict(orient="split")["data"], # type: ignore
metadata=self.__extract_metadata(value), # type: ignore
)
@staticmethod
def __get_cell_style(cell_id: str, cell_styles: list[dict]) -> str:
styles_for_cell = []
for style in cell_styles:
if cell_id in style.get("selectors", []):
styles_for_cell.extend(style.get("props", []))
styles_str = "; ".join([f"{prop}: {value}" for prop, value in styles_for_cell])
return styles_str
@staticmethod
def __extract_metadata(df: Styler) -> dict[str, list[list]]:
metadata = {"display_value": [], "styling": []}
style_data = df._compute()._translate(None, None) # type: ignore
cell_styles = style_data.get("cellstyle", [])
for i in range(len(style_data["body"])):
metadata["display_value"].append([])
metadata["styling"].append([])
for j in range(len(style_data["body"][i])):
cell_type = style_data["body"][i][j]["type"]
if cell_type != "td":
continue
display_value = style_data["body"][i][j]["display_value"]
cell_id = style_data["body"][i][j]["id"]
styles_str = Leaderboard.__get_cell_style(cell_id, cell_styles)
metadata["display_value"][i].append(display_value)
metadata["styling"][i].append(styles_str)
return metadata
def process_example(
self,
value: pd.DataFrame | Styler | str | None,
):
import pandas as pd
if value is None:
return ""
value_df_data = self.postprocess(value)
value_df = pd.DataFrame(value_df_data.data, columns=value_df_data.headers)
return value_df.head(n=5).to_dict(orient="split")["data"]
def example_payload(self) -> Any:
return {"headers": ["a", "b"], "data": [["foo", "bar"]]}
def example_inputs(self) -> Any:
return self.example_value()
def example_value(self) -> Any:
return {"headers": ["a", "b"], "data": [["foo", "bar"]]}
|