File size: 19,506 Bytes
f10a835
193db9d
 
 
 
 
 
f10a835
193db9d
 
 
3b39b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f10a835
3b39b49
 
 
 
 
 
 
 
 
f064c62
 
 
 
 
 
3b39b49
f064c62
3b39b49
f10a835
 
 
 
 
 
3b39b49
 
02b7dec
 
f064c62
f10a835
 
f064c62
3b39b49
 
 
 
 
 
 
 
f064c62
3b39b49
 
 
 
 
 
f064c62
3b39b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193db9d
 
 
3b39b49
193db9d
3b39b49
f064c62
 
3b39b49
 
 
 
 
 
 
 
 
 
 
 
 
193db9d
 
 
 
 
3b39b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f10a835
f064c62
f10a835
 
3b39b49
193db9d
 
f10a835
193db9d
f064c62
 
 
 
193db9d
f10a835
 
f064c62
 
193db9d
f064c62
 
 
 
 
 
 
 
 
 
193db9d
f10a835
 
 
 
 
193db9d
 
 
 
 
 
f10a835
193db9d
 
 
3b39b49
193db9d
 
3b39b49
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b39b49
 
 
 
 
 
 
 
 
f064c62
3b39b49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b39b49
193db9d
 
 
 
f10a835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f064c62
 
 
f10a835
 
 
 
f064c62
 
 
f10a835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f064c62
f10a835
f064c62
f10a835
 
f064c62
f10a835
 
 
f064c62
f10a835
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# %%
import json
import logging
import re
from collections import Counter

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd


def _make_answer_html(answer: str, clean_answers: list[str] = []) -> str:
    clean_answers = [a for a in clean_answers if len(a.split()) <= 6 and a != answer]
    additional_answers_html = ""
    if clean_answers:
        additional_answers_html = f"<span class='bonus-answer-text'> [or {', '.join(clean_answers)}]</span>"
    return f"""
        <div class='bonus-answer'>
            <span class='bonus-answer-label'>Answer: </span>
            <span class='bonus-answer-text'>{answer}</span>
            {additional_answers_html}
        </div>
    """


def _get_token_classes(confidence, buzz, score) -> str:
    if confidence is None:
        return "token"
    elif not buzz:
        return f"token guess-point buzz-{score}"
    else:
        return f"token guess-point buzz-{score}"


def _create_token_tooltip_html(values) -> str:
    if not values:
        return ""
    confidence = values.get("confidence", 0)
    buzz = values.get("buzz", 0)
    correct = values.get("correct", 0)
    guess = values.get("guess", "")
    guess_tokens = guess.split()
    if len(guess_tokens) > 10:
        k = len(guess_tokens) - 10
        guess = " ".join(guess_tokens[:10]) + f"...[{k} more words]"

    color = "#a3c9a3" if correct else "#ebbec4"  # Light green for correct, light pink for incorrect

    if values.get("logprob", None) is not None:
        prob = np.exp(values["logprob"])
        prob_str = f"<p style='margin: 0 0 4px; color: #000;'> πŸ“ˆ <b style='color: #000;'>Output Probability:</b> {prob:.3f}</p>"
    else:
        prob_str = ""

    return f"""
        <div class="tooltip card" style="background-color: {color}; border-radius: 8px; padding: 12px; box-shadow: 2px 4px 8px rgba(0, 0, 0, 0.15);">
            <div class="tooltip-content" style="font-family: 'Arial', sans-serif; color: #000;">
                <h4 style="margin: 0 0 8px; color: #000;">πŸ’‘ Answer</h4>
                <p><code style="font-weight: bold; margin: 0 0 8px; color: #000;">{guess}</code></p>
                <p style="margin: 0 0 4px; color: #000;">πŸ“ˆ <b style="color: #000;">Confidence:</b> {confidence:.2f}</p>
                {prob_str}
                <p style="margin: 0; color: #000;">πŸ” <b style="color: #000;">Status:</b> {"βœ… Correct" if correct else "❌ Incorrect" if buzz else "🚫 No Buzz"}</p>
            </div>
        </div>
    """


def create_token_html(token: str, values: dict, i: int) -> str:
    confidence = values.get("confidence", None)
    buzz = values.get("buzz", 0)
    correct = values.get("correct", 0)

    # Replace non-word characters for proper display in HTML
    display_token = f"{token} 🚨" if buzz else f"{token} πŸ’­" if values else token
    if not re.match(r"\w+", token):
        display_token = token.replace(" ", "&nbsp;")

    css_class = _get_token_classes(confidence, buzz, correct)
    # Add tooltip if we have values for this token
    tooltip_html = _create_token_tooltip_html(values)

    token_html = f'<span id="token-{i}" class="{css_class}" data-index="{i}">{display_token}{tooltip_html}</span>'
    # if i in marker_indices:
    #     token_html += "<span style='color: crimson;'>|</span>"
    return token_html


def create_tossup_html(
    tokens: list[str],
    answer_primary: str,
    clean_answers: list[str],
    marker_indices: list[int] = [],
    eval_points: list[tuple[int, dict]] = [],
) -> str:
    """Create HTML for tokens with hover capability and a colored header for the answer."""
    try:
        ep = dict(eval_points)
        marker_indices = set(marker_indices)

        html_tokens = []
        for i, token in enumerate(tokens, start=1):
            token_html = create_token_html(token, ep.get(i, {}), i)
            html_tokens.append(token_html)

        answer_html = _make_answer_html(answer_primary, clean_answers)
        return f"""
        <div class='bonus-container'>
            <div class='bonus-card'>
                <div class='tossup-question'>
                    {"".join(html_tokens)}
            </div>
                {answer_html}
            </div>
        </div>
        """
    except Exception as e:
        logging.error(f"Error creating token HTML: {e}", exc_info=True)
        return f"<div class='token-container'>Error creating tokens: {str(e)}</div>"


def create_bonus_html(leadin: str, parts: list[dict]) -> str:
    # Create HTML for leadin and parts with answers
    leadin_html = f"<div class='bonus-leadin'>{leadin}</div>"
    parts_html = []

    for i, part in enumerate(parts):
        question_text = part["part"]
        answer_html = _make_answer_html(part["answer_primary"], part["clean_answers"])

        "<div class='bonus-part-number'>Part {i + 1}</div>"
        part_html = f"""
                <div class='bonus-part'>
                    <div class='bonus-part-text'><b>#{i + 1}.</b> {question_text}</div>
                    {answer_html}
                </div>
            """
        parts_html.append(part_html)

    html_content = f"""
            <div class='bonus-container'>
                <div class='bonus-card'>
                    {leadin_html}
                    {"".join(parts_html)}
                </div>
            </div>
        """

    # Format clean answers for the answer display
    clean_answers = []
    for i, part in enumerate(parts):
        part_answers = [a for a in part["clean_answers"] if len(a.split()) <= 6]
        clean_answers.append(f"{i + 1}. {', '.join(part_answers)}")

    return html_content


def create_tossup_confidence_pyplot(
    tokens: list[str],
    run_outputs: list[dict],
    confidence_threshold: float = 0.5,
    prob_threshold: float | None = None,
) -> plt.Figure:
    """Create a pyplot of token values with optional highlighting."""
    plt.style.use("ggplot")  # Set theme to grid paper
    fig = plt.figure(figsize=(10, 4), dpi=300)  # Set figure size to 11x5
    ax = fig.add_subplot(111)
    x = [0] + [o["token_position"] for o in run_outputs]
    y_conf = [0] + [o["confidence"] for o in run_outputs]
    logprobs = [o["logprob"] for o in run_outputs if o["logprob"] is not None]
    y_prob = [0] + [np.exp(v) for v in logprobs]

    ax.plot(x, y_prob, "o-", color="#f2b150", label="Probability")
    ax.plot(x, y_conf, "o-", color="#4996de", label="Confidence")
    for o in run_outputs:
        if not o["buzz"]:
            continue
        color = "green" if o["correct"] else "red"
        conf = o["confidence"]
        i = o["token_position"]
        ax.plot(i, conf, "o", color=color, markerfacecolor="none", markersize=12, markeredgewidth=2.5)
        if o["logprob"] is not None:
            prob = np.exp(o["logprob"])
            ax.plot(i, prob, "o", color=color, markerfacecolor="none", markersize=12, markeredgewidth=2.5)
        if i > len(tokens):
            print(f"1-indexed token index {i} is out of bounds for n_tokens: {len(tokens)}")
        ax.annotate(f"{tokens[i - 1]}", (i, conf), textcoords="offset points", xytext=(0, 10), ha="center")

    # Add horizontal dashed line for confidence threshold
    ax.axhline(y=confidence_threshold, color="#9370DB", linestyle="--", xmin=0, xmax=1, label="Confidence Threshold")
    # Add horizontal dashed line for probability threshold if provided
    if prob_threshold is not None:
        ax.axhline(y=prob_threshold, color="#cf5757", linestyle="--", xmin=0, xmax=1, label="Probability Threshold")

    ax.set_title("Buzz Confidence")
    ax.set_xlabel("Token Index")
    ax.set_ylabel("Confidence")
    ax.set_xticks(x)
    ax.set_xticklabels(x)
    ax.legend()
    return fig


def create_scatter_pyplot(token_positions: list[int], scores: list[int]) -> plt.Figure:
    """Create a scatter plot of token positions and scores."""
    plt.style.use("ggplot")
    fig = plt.figure(figsize=(11, 5))
    ax = fig.add_subplot(111)

    counts = Counter(zip(token_positions, scores))
    X = []
    Y = []
    S = []
    for (pos, score), size in counts.items():
        X.append(pos)
        Y.append(score)
        S.append(size * 20)

    ax.scatter(X, Y, color="#4698cf", s=S)

    return fig


def create_bonus_confidence_plot(parts: list[dict], model_outputs: list[dict]) -> plt.Figure:
    """Create confidence plot for bonus parts."""
    plt.style.use("ggplot")
    fig = plt.figure(figsize=(10, 6))
    ax = fig.add_subplot(111)

    # Plot confidence for each part
    x = range(1, len(parts) + 1)
    confidences = [output["confidence"] for output in model_outputs]
    scores = [output["correct"] for output in model_outputs]

    # Plot confidence bars
    bars = ax.bar(x, confidences, color="#4698cf")

    # Color bars based on correctness
    for i, score in enumerate(scores):
        bars[i].set_color("green" if score == 1 else "red")

    ax.set_title("Part Confidence")
    ax.set_xlabel("Part Number")
    ax.set_ylabel("Confidence")
    ax.set_xticks(x)
    ax.set_xticklabels([f"Part {i}" for i in x])

    return fig


def update_tossup_plot(highlighted_index: int, state: str) -> pd.DataFrame:
    """Update the plot when a token is hovered; add a vertical line on the plot."""
    try:
        if not state or state == "{}":
            logging.warning("Empty state provided to update_plot")
            return pd.DataFrame()

        highlighted_index = int(highlighted_index) if highlighted_index else None
        logging.info(f"Update plot triggered with token index: {highlighted_index}")

        data = json.loads(state)
        tokens = data.get("tokens", [])
        values = data.get("values", [])

        if not tokens or not values:
            logging.warning("No tokens or values found in state")
            return pd.DataFrame()

        # Create updated plot with highlighting of the token point
        # plot_data = create_line_plot(values, highlighted_index)
        plot_data = create_tossup_confidence_pyplot(tokens, values, highlighted_index)
        return plot_data
    except Exception as e:
        logging.error(f"Error updating plot: {e}")
        return pd.DataFrame()


def create_tossup_eval_table(df: pd.DataFrame) -> pd.DataFrame:
    """Create a table from a dataframe."""
    # Prepare a dataframe of aggregated metrics:
    # - Mean Tossup Score
    # - Buzz Accuracy
    # - Mean +ve Gap
    # - Mean -ve Gap
    # - Mean Buzz Position

    positions = df["chosen_idx"].dropna()
    gaps = df["gap"].dropna()
    pos_gaps = gaps.loc[gaps >= 0]
    neg_gaps = gaps.loc[gaps < 0]

    mean_tossup_score = df["raw_score"].sum() / len(df)
    expected_score = df["expected_score"].sum() / len(df)
    buzz_precision = df["is_correct"].sum() / df["buzz"].sum()

    return pd.DataFrame(
        [
            {
                "Raw Score": f"{mean_tossup_score:5.1f}",
                "Expected Score": f"{expected_score:5.1f}",
                "Buzz Precision": f"{buzz_precision:5.1%}",
                "Buzz Position": f"{np.mean(positions):5.1f}",
                "+ve Gap": f"{pos_gaps.mean():5.1f}",
                "-ve Gap": f"{neg_gaps.mean():5.1f}",
            }
        ]
    )


def create_tossup_eval_dashboard(run_indices: list[list[int]], df: pd.DataFrame, *, figsize=(15, 8), title_prefix=""):
    """
    Visualise buzzing behaviour with three sub-plots:

    1. Ceiling-accuracy vs. prefix length
    2. Scatter of earliest-correct idx vs. chosen-buzz idx
    3. Frequency distribution of narrative classes (vertical bars)

    Parameters
    ----------
    df : pd.DataFrame
        Output of `build_buzz_dataframe` – must contain
        columns: earliest_ok_idx, chosen_idx, cls.
    eval_indices : sequence[int]
        Token positions at which the model was probed.
    figsize : tuple, optional
        Figure size passed to `plt.subplots`.
    title_prefix : str, optional
        Prepended to each subplot title (useful when comparing models).
    """
    # ------------------------------------------------------------------
    # 0. Prep (variables reused throughout the function)
    # ------------------------------------------------------------------
    # Collect all evaluation indices across questions so we know the
    # x-axis domain and the padding for NaNs.
    eval_indices = np.asarray(sorted({idx for indices in run_indices for idx in indices}))

    # Narrative classes and their colours
    classes = [
        "best-buzz",
        "late-buzz",
        "never-buzzed",
        "premature",
        "hopeless",
    ]
    colors = ["tab:green", "tab:olive", "tab:orange", "tab:red", "tab:gray"]
    palette = dict(zip(classes, colors))

    max_idx = eval_indices.max() * 1.25  # padding for NaN replacement / axis limits

    # ------------------------------------------------------------------
    # 1. Figure / axes layout
    # ------------------------------------------------------------------
    # GridSpec layout β†’ 2 rows Γ— 3 cols.
    #   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”
    #   β”‚ Ceiling    β”‚ Scatter    β”‚  Bars  β”‚  (row 0)
    #   β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€
    #   β”‚ Descriptions (spans all 3 cols)  β”‚  (row 1)
    #   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
    # Having a dedicated row for the narrative-class descriptions avoids
    # overlapping with sub-plots and makes the whole figure more compact.

    plt.style.use("ggplot")
    fig = plt.figure(figsize=figsize)
    gs = fig.add_gridspec(
        nrows=2,
        ncols=3,
        height_ratios=[5, 1],  # extra space for plots vs. descriptions
        width_ratios=[2.2, 2.2, 1],
        hspace=0.2,  # reduced vertical spacing between plots
        wspace=0.2,  # reduced horizontal spacing between plots
        left=0.05,  # reduced left margin
        right=0.95,  # reduced right margin
        top=0.9,  # reduced top margin
        bottom=0.05,  # reduced bottom margin
    )

    ax_ceiling = fig.add_subplot(gs[0, 0])  # Ceiling accuracy curve
    ax_scatter = fig.add_subplot(gs[0, 1])  # Earliest vs. chosen scatter
    ax_bars = fig.add_subplot(gs[0, 2])  # Outcome distribution bars
    ax_desc = fig.add_subplot(gs[1, :])  # Textual descriptions
    ax_desc.axis("off")

    fig.suptitle("Buzzing behaviour", fontsize=16, fontweight="bold")

    # ------------------------------------------------------------------
    # 2. Ceiling accuracy curve
    # ------------------------------------------------------------------
    ceiling = [((df["earliest_ok_idx"].notna()) & (df["earliest_ok_idx"] <= idx)).mean() for idx in eval_indices]
    ax_ceiling.plot(eval_indices, ceiling, marker="o", color="#4698cf")
    ax_ceiling.set_xlabel("Token index shown")
    ax_ceiling.set_ylabel("Proportion of questions correct")
    ax_ceiling.set_ylim(0, 1.01)
    ax_ceiling.set_title(f"{title_prefix}Ceiling accuracy vs. prefix")

    # ------------------------------------------------------------------
    # 3. Earliest-vs-Chosen scatter
    # ------------------------------------------------------------------
    for cls in classes:
        sub = df[df["cls"] == cls]
        if sub.empty:
            continue
        x = sub["earliest_ok_idx"].fillna(max_idx)
        y = sub["chosen_idx"].fillna(max_idx)
        ax_scatter.scatter(
            x,
            y,
            label=cls,
            alpha=0.7,
            edgecolor="black",
            linewidth=1,
            marker="o",
            s=90,
            c=palette[cls],
            facecolor="none",
        )

    lim = max_idx
    ax_scatter.plot([0, lim], [0, lim], linestyle=":", linewidth=1)
    ax_scatter.set_xlim(0, lim)
    ax_scatter.set_ylim(0, lim)
    ax_scatter.set_xlabel("Earliest index with correct answer")
    ax_scatter.set_ylabel("Chosen buzz index")
    ax_scatter.set_title(f"{title_prefix}Earliest vs. chosen index")
    ax_scatter.legend(frameon=False, fontsize="small")

    # ------------------------------------------------------------------
    # 4. Outcome distribution (horizontal bars)
    # ------------------------------------------------------------------
    counts = df["cls"].value_counts().reindex(classes).fillna(0)
    ax_bars.barh(
        counts.index,
        counts.values,
        color=[palette[c] for c in counts.index],
        alpha=0.7,
        edgecolor="black",
        linewidth=1,
    )
    ax_bars.set_xlabel("Number of questions")
    ax_bars.set_title(f"{title_prefix}Outcome distribution")

    # Ensure x-axis shows integer ticks only
    from matplotlib.ticker import MaxNLocator

    ax_bars.xaxis.set_major_locator(MaxNLocator(integer=True))

    # ------------------------------------------------------------------
    # 5. Narrative-class descriptions (bottom panel)
    # ------------------------------------------------------------------
    descriptions = {
        "best-buzz": "Perfect timing. Buzzed at the earliest possible correct position",
        "late-buzz": "Missed opportunity. Buzzed correctly but later than optimal",
        "never-buzzed": "Missed opportunity. Never buzzed despite knowing the answer",
        "premature": "Incorrect buzz. Buzzing at a later position could have been correct",
        "hopeless": "Never knew the answer. No correct answer at any position",
    }

    y_pos = 1.0  # start at top of the description axis

    for cls, color in zip(classes, colors):
        ax_desc.text(
            0.01,
            y_pos,
            f"β–  {cls}: {descriptions[cls]}",
            ha="left",
            va="top",
            color=color,
            fontweight="bold",
            fontsize=11,  # increased font size from 9 to 11
            transform=ax_desc.transAxes,
        )

        y_pos -= 0.25  # increased vertical step inside the axis for more line height

    # ------------------------------------------------------------------
    # 6. Return the final figure
    # ------------------------------------------------------------------
    return fig


# %%


# Create dummy data for testing
def create_dummy_model_outputs(n_entries=10, n_positions=5):
    """Create dummy model outputs for testing."""
    np.random.seed(42)
    dummy_outputs = []

    for _ in range(n_entries):
        run_indices = sorted(np.random.choice(range(10, 50), n_positions, replace=False))
        outputs = []

        for i in range(n_positions):
            # Randomly decide if model will buzz at this position
            will_buzz = np.random.random() > 0.7
            # Randomly decide if answer is correct
            is_correct = np.random.random() > 0.4

            outputs.append(
                {
                    "run_idx": i + 1,
                    "buzz": will_buzz,
                    "correct": 1 if is_correct else 0,
                    "confidence": np.random.random(),
                    "logprob": np.log(np.random.random()),
                    "guess": f"Answer {i + 1}",
                }
            )

        dummy_outputs.append({"run_indices": run_indices, "run_outputs": outputs})

    return dummy_outputs


# dummy_data = create_dummy_model_outputs()
# dummy_df = pd.DataFrame([create_df_entry(entry["run_indices"], entry["outputs"]) for entry in dummy_data])
# dummy_df
# plot_buzz_dashboard(dummy_df, dummy_data[0]["run_indices"])

# %%