File size: 6,745 Bytes
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import time
from typing import Any, Iterable

# from litellm import completion
from llms import completion
from workflows.executors import execute_model_step, execute_workflow
from workflows.structs import ModelStep, Workflow


def _get_agent_response(self, prompt: str, system_prompt: str) -> dict:
    """Get response from the LLM model."""
    messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}]

    start_time = time.time()
    response = completion(
        model=self.model,
        messages=messages,
        temperature=self.temperature,
        max_tokens=150,  # Limit token usage for faster responses
    )
    response_time = time.time() - start_time

    return response, response_time


def _get_model_step_response(
    model_step: ModelStep, available_vars: dict[str, Any]
) -> tuple[dict[str, Any], str, float]:
    """Get response from the LLM model."""
    start_time = time.time()
    response, content = execute_model_step(model_step, available_vars, return_full_content=True)
    response_time = time.time() - start_time
    return response, content, response_time


class SimpleTossupAgent:
    external_input_variable = "question_text"
    output_variables = ["answer", "confidence"]

    def __init__(self, workflow: Workflow, buzz_threshold: float):
        steps = list(workflow.steps.values())
        assert len(steps) == 1, "Only one step is allowed in a simple workflow"
        self.model_step = steps[0]
        self.buzz_threshold = buzz_threshold
        self.output_variables = list(workflow.outputs.keys())

        if self.external_input_variable not in workflow.inputs:
            raise ValueError(f"External input variable {self.external_input_variable} not found in model step inputs")

        for out_var in self.output_variables:
            if out_var not in workflow.outputs:
                raise ValueError(f"Output variable {out_var} not found in the workflow outputs")

    def run(self, question_runs: list[str], early_stop: bool = True) -> Iterable[dict]:
        """
        Process a tossup question and decide when to buzz based on confidence.

        Args:
            question_runs: Progressive reveals of the question text
            early_stop: Whether to stop after the first buzz

        Yields:
            Dict with answer, confidence, and whether to buzz
        """

        for i, question_text in enumerate(question_runs):
            response, content, response_time = _get_model_step_response(
                self.model_step, {self.external_input_variable: question_text}
            )
            buzz = response["confidence"] >= self.buzz_threshold
            result = {
                "answer": response["answer"],
                "confidence": response["confidence"],
                "buzz": buzz,
                "question_fragment": question_text,
                "position": i + 1,
                "full_response": content,
                "response_time": response_time,
            }

            yield result

            # If we've reached the confidence threshold, buzz and stop
            if early_stop and buzz:
                return


class SimpleBonusAgent:
    external_input_variables = ["leadin", "part"]
    output_variables = ["answer", "confidence", "explanation"]

    def __init__(self, workflow: Workflow):
        steps = list(workflow.steps.values())
        assert len(steps) == 1, "Only one step is allowed in a simple workflow"
        self.model_step = steps[0]
        self.output_variables = list(workflow.outputs.keys())

        # Validate input variables
        for input_var in self.external_input_variables:
            if input_var not in workflow.inputs:
                raise ValueError(f"External input variable {input_var} not found in model step inputs")

        # Validate output variables
        for out_var in self.output_variables:
            if out_var not in workflow.outputs:
                raise ValueError(f"Output variable {out_var} not found in the workflow outputs")

    def run(self, leadin: str, part: str) -> dict:
        """
        Process a bonus part with the given leadin.

        Args:
            leadin: The leadin text for the bonus question
            part: The specific part text to answer

        Returns:
            Dict with answer, confidence, and explanation
        """
        response, content, response_time = _get_model_step_response(
            self.model_step,
            {
                "leadin": leadin,
                "part": part,
            },
        )

        return {
            "answer": response["answer"],
            "confidence": response["confidence"],
            "explanation": response["explanation"],
            "full_response": content,
            "response_time": response_time,
        }


# Example usage
if __name__ == "__main__":
    # Load the Quizbowl dataset
    from datasets import load_dataset

    from workflows.factory import create_quizbowl_bonus_step_initial_setup, create_quizbowl_simple_step_initial_setup

    ds_name = "umdclip/leaderboard_co_set"
    ds = load_dataset(ds_name, split="train")

    # Create the agents
    tossup_step = create_quizbowl_simple_step_initial_setup()
    tossup_step.model = "gpt-4"
    tossup_step.provider = "openai"
    tossup_agent = SimpleTossupAgent(workflow=tossup_step, buzz_threshold=0.9)

    bonus_step = create_quizbowl_bonus_step_initial_setup()
    bonus_step.model = "gpt-4"
    bonus_step.provider = "openai"
    bonus_agent = SimpleBonusAgent(workflow=bonus_step)

    # Example for tossup mode
    print("\n=== TOSSUP MODE EXAMPLE ===")
    sample_question = ds[30]
    print(sample_question["question_runs"][-1])
    print(sample_question["gold_label"])
    print()
    question_runs = sample_question["question_runs"]

    results = tossup_agent.run(question_runs, early_stop=True)
    for result in results:
        print(result["full_response"])
        print(f"Guess at position {result['position']}: {result['answer']}")
        print(f"Confidence: {result['confidence']}")
        if result["buzz"]:
            print("Buzzed!\n")

    # Example for bonus mode
    print("\n=== BONUS MODE EXAMPLE ===")
    sample_bonus = ds[31]  # Assuming this is a bonus question
    leadin = sample_bonus["leadin"]
    parts = sample_bonus["parts"]

    print(f"Leadin: {leadin}")
    for i, part in enumerate(parts):
        print(f"\nPart {i + 1}: {part['part']}")
        result = bonus_agent.run(leadin, part["part"])
        print(f"Answer: {result['answer']}")
        print(f"Confidence: {result['confidence']}")
        print(f"Explanation: {result['explanation']}")
        print(f"Response time: {result['response_time']:.2f}s")