File size: 2,049 Bytes
dbaf7c6
 
8fe7306
 
 
 
 
dbaf7c6
 
 
 
 
 
 
 
 
 
8fe7306
dbaf7c6
 
 
 
 
8fe7306
dbaf7c6
 
 
 
 
8fe7306
 
dbaf7c6
 
 
 
 
 
 
8fe7306
 
 
cf27cda
dbaf7c6
414dfdc
dd4d11e
b9def7b
 
 
 
 
414dfdc
dbaf7c6
 
 
cf27cda
dbaf7c6
dd4d11e
b9def7b
 
 
 
 
 
dd4d11e
dbaf7c6
8fe7306
 
 
 
dd4d11e
 
b9def7b
 
 
 
 
dd4d11e
8fe7306
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
from fastapi import APIRouter
from pythainlp.tokenize import (
    word_tokenize as py_word_tokenize,
    subword_tokenize as py_subword_tokenize,
    sent_tokenize as py_sent_tokenize
)
from enum import Enum
from typing import List, Optional
from pydantic import BaseModel

router = APIRouter()


class SentTokenizeEngine(str, Enum):
    whitespace = "whitespace"
    whitespace_newline = "whitespace+newline"
    crfcut = "crfcut"


class WordTokenizeEngine(str, Enum):
    newmm = "newmm"
    longest = "longest"
    tltk = "tltk"


class SubwordTokenizeEngine(str, Enum):
    tcc = "tcc"
    etcc = "etcc"
    ssg = "ssg"
    tltk = "tltk"

class WordTokenizeResponse(BaseModel):
    words: List[str] = []

class SubwordTokenizeResponse(BaseModel):
    subwords: List[str] = []

class SentTokenizeEngine(BaseModel):
    sents: List[str] = []

@router.post('/word_tokenize', response_model=WordTokenizeResponse)
def word_tokenize(text: str, engine: WordTokenizeEngine = "newmm"):
    """
    Word tokenize or word segmentation for Thai language

    ## Input

    = **text**: Text that want to tokenize.
    - **engine**: Word Tokenize Engine (default is newmm)
    """
    return {"words": py_word_tokenize(text=text, engine=engine)}


@router.post('/subword_tokenize', response_model=SubwordTokenizeResponse)
def subword_tokenize(text: str, engine: SubwordTokenizeEngine = "tcc"):
    """
    Subword tokenize or subword segmentation for Thai language

    ## Input

    = **text**: Text that want to tokenize.
    - **engine**: Sub word Tokenize Engine (default is tcc)
    """
    return {"subwords": py_subword_tokenize(text=text, engine=engine)}


@router.post('/sent_tokenize', response_model=SentTokenizeEngine)
def sent_tokenize(text: str, engine: SentTokenizeEngine = "crfcut"):
    """
    Thai sentence segmentation

    ## Input

    = **text**: Text that want to tokenize.
    - **engine**: Sentence Tokenize Engine (default is crfcut)
    """
    return {"sents": py_sent_tokenize(text=text, engine=engine)}