Spaces:
Running
Running
import numpy as np | |
import cv2 | |
import gradio as gr | |
from PIL import Image | |
# Load Haar Cascade classifier | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
# Face Detection Function | |
def detect_faces(image_np,slider): | |
# Convert image to grayscale | |
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) | |
# Detect faces | |
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=slider, minNeighbors=5, minSize=(30, 30)) | |
# Draw rectangles around faces | |
for (x, y, w, h) in faces: | |
cv2.rectangle(image_np, (x, y), (x + w, y + h), (0, 255, 0), 2) | |
return image_np, len(faces) | |
# Create Gradio Interface | |
iface = gr.Interface( | |
fn=detect_faces, | |
inputs=["image",gr.Slider(minimum=1,maximum=2,step=.1,label= "adjust the scaleFactor")], | |
outputs=["image",gr.Label("faces count")], | |
title="Face Detection", | |
description="Upload an image, and the model will detect faces and draw bounding boxes around them." | |
) | |
iface.launch() |