Spaces:
Running
Running
import numpy as np | |
import cv2 | |
import gradio as gr | |
# Load Haar Cascade classifier | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
# Face Detection Function | |
def detect_faces(image_np, slider): | |
# Convert image to numpy array | |
img = np.array(image_np) | |
# Convert to grayscale | |
gray_image = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
# Detect faces | |
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=slider, minNeighbors=5, minSize=(30, 30)) | |
# Draw rectangles on original image | |
for (x, y, w, h) in faces: | |
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) | |
return img, f"Faces detected: {len(faces)}" | |
# Create Gradio Interface | |
iface = gr.Interface( | |
fn=detect_faces, | |
inputs=[ | |
gr.Image(type="numpy", label="Upload Image"), | |
gr.Slider(minimum=1.1, maximum=2.0, step=0.1, label="Adjust the scale factor.") | |
], | |
outputs=[ | |
gr.Image(label="Detected Faces"), | |
gr.Label(label="Face Count") | |
], | |
title="Face Detection", | |
description="Upload an image, and the model will detect faces and draw bounding boxes around them." | |
) | |
iface.launch() | |