Kaushik066 commited on
Commit
8993328
·
verified ·
1 Parent(s): 781a6d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -72,7 +72,7 @@ class FaceEmbeddingModel(torch.nn.Module):
72
  model_pretrained = torch.load(model_path, map_location=device, weights_only=False)
73
 
74
  # Define the ML model - Evaluation function
75
- def prod_function(transformer_model, prod_dl, prod_data):
76
  # Initialize accelerator
77
  accelerator = Accelerator()
78
 
@@ -88,22 +88,23 @@ def prod_function(transformer_model, prod_dl, prod_data):
88
  set_seed(42)
89
 
90
  # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the prepare method.
91
- accelerated_model, acclerated_prod_dl, acclerated_prod_data = accelerator.prepare(transformer_model, prod_dl, prod_data)
92
 
93
  # Evaluate at the end of the epoch
94
  accelerated_model.eval()
95
 
96
  # Find Embedding of the image to be evaluated
97
- with torch.no_grad():
98
- img_prod = acclerated_prod_data['pixel_values']
99
- emb_prod = accelerated_model(img_prod)
 
100
 
101
  prod_preds = []
102
 
103
  for batch in acclerated_prod_dl:
104
- img = batch['pixel_values']
105
  with torch.no_grad():
106
- emb = accelerated_model(img)
107
  distance = F.pairwise_distance(emb, emb_prod)
108
 
109
  prod_preds.append(distance)
 
72
  model_pretrained = torch.load(model_path, map_location=device, weights_only=False)
73
 
74
  # Define the ML model - Evaluation function
75
+ def prod_function(transformer_model, prod_dl, webcam_dl):
76
  # Initialize accelerator
77
  accelerator = Accelerator()
78
 
 
88
  set_seed(42)
89
 
90
  # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the prepare method.
91
+ accelerated_model, acclerated_prod_dl, acclerated_webcam_dl = accelerator.prepare(transformer_model, prod_dl, webcam_dl)
92
 
93
  # Evaluate at the end of the epoch
94
  accelerated_model.eval()
95
 
96
  # Find Embedding of the image to be evaluated
97
+ for batch in acclerated_webcam_dl:
98
+ with torch.no_grad():
99
+ #img_prod = acclerated_prod_data['pixel_values']
100
+ emb_prod = accelerated_model(batch)
101
 
102
  prod_preds = []
103
 
104
  for batch in acclerated_prod_dl:
105
+ #img = batch['pixel_values']
106
  with torch.no_grad():
107
+ emb = accelerated_model(batch)
108
  distance = F.pairwise_distance(emb, emb_prod)
109
 
110
  prod_preds.append(distance)