|
import streamlit as st |
|
from data_utils import * |
|
import xarray as xr |
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import pickle |
|
import glob, os |
|
import re |
|
import tensorflow as tf |
|
import netCDF4 |
|
import copy |
|
import string |
|
import h5py |
|
from tqdm import tqdm |
|
grid_info = xr.open_dataset('ClimSim_low-res_grid-info.nc') |
|
input_mean = xr.open_dataset('input_mean.nc') |
|
input_max = xr.open_dataset('input_max.nc') |
|
input_min = xr.open_dataset('input_min.nc') |
|
output_scale = xr.open_dataset('output_scale.nc') |
|
|
|
data = data_utils(grid_info = grid_info, |
|
input_mean = input_mean, |
|
input_max = input_max, |
|
input_min = input_min, |
|
output_scale = output_scale) |
|
|
|
data.set_to_v1_vars() |
|
|
|
|
|
|
|
st.markdown('Streamlit ') |