File size: 49,355 Bytes
d01872e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
import xarray as xr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import glob, os
import re
import tensorflow as tf
import netCDF4
import copy
import string
import h5py
from tqdm import tqdm
class data_utils:
def __init__(self,
grid_info,
input_mean,
input_max,
input_min,
output_scale):
self.data_path = None
self.input_vars = []
self.target_vars = []
self.input_feature_len = None
self.target_feature_len = None
self.grid_info = grid_info
self.level_name = 'lev'
self.sample_name = 'sample'
self.latlonnum = len(self.grid_info['ncol']) # number of unique lat/lon grid points
# make area-weights
self.grid_info['area_wgt'] = self.grid_info['area']/self.grid_info['area'].mean(dim = 'ncol')
self.area_wgt = self.grid_info['area_wgt'].values
# map ncol to nsamples dimension
# to_xarray = {'area_wgt':(self.sample_name,np.tile(self.grid_info['area_wgt'], int(n_samples/len(self.grid_info['ncol']))))}
# to_xarray = xr.Dataset(to_xarray)
self.input_mean = input_mean
self.input_max = input_max
self.input_min = input_min
self.output_scale = output_scale
self.lats, self.lats_indices = np.unique(self.grid_info['lat'].values, return_index=True)
self.lons, self.lons_indices = np.unique(self.grid_info['lon'].values, return_index=True)
self.sort_lat_key = np.argsort(self.grid_info['lat'].values[np.sort(self.lats_indices)])
self.sort_lon_key = np.argsort(self.grid_info['lon'].values[np.sort(self.lons_indices)])
self.indextolatlon = {i: (self.grid_info['lat'].values[i%self.latlonnum], self.grid_info['lon'].values[i%self.latlonnum]) for i in range(self.latlonnum)}
def find_keys(dictionary, value):
keys = []
for key, val in dictionary.items():
if val[0] == value:
keys.append(key)
return keys
indices_list = []
for lat in self.lats:
indices = find_keys(self.indextolatlon, lat)
indices_list.append(indices)
indices_list.sort(key = lambda x: x[0])
self.lat_indices_list = indices_list
self.hyam = self.grid_info['hyam'].values
self.hybm = self.grid_info['hybm'].values
self.p0 = 1e5 # code assumes this will always be a scalar
self.pressure_grid_train = None
self.pressure_grid_val = None
self.pressure_grid_scoring = None
self.pressure_grid_test = None
self.dp_train = None
self.dp_val = None
self.dp_scoring = None
self.dp_test = None
self.train_regexps = None
self.train_stride_sample = None
self.train_filelist = None
self.val_regexps = None
self.val_stride_sample = None
self.val_filelist = None
self.scoring_regexps = None
self.scoring_stride_sample = None
self.scoring_filelist = None
self.test_regexps = None
self.test_stride_sample = None
self.test_filelist = None
# physical constants from E3SM_ROOT/share/util/shr_const_mod.F90
self.grav = 9.80616 # acceleration of gravity ~ m/s^2
self.cp = 1.00464e3 # specific heat of dry air ~ J/kg/K
self.lv = 2.501e6 # latent heat of evaporation ~ J/kg
self.lf = 3.337e5 # latent heat of fusion ~ J/kg
self.lsub = self.lv + self.lf # latent heat of sublimation ~ J/kg
self.rho_air = 101325/(6.02214e26*1.38065e-23/28.966)/273.15 # density of dry air at STP ~ kg/m^3
# ~ 1.2923182846924677
# SHR_CONST_PSTD/(SHR_CONST_RDAIR*SHR_CONST_TKFRZ)
# SHR_CONST_RDAIR = SHR_CONST_RGAS/SHR_CONST_MWDAIR
# SHR_CONST_RGAS = SHR_CONST_AVOGAD*SHR_CONST_BOLTZ
self.rho_h20 = 1.e3 # density of fresh water ~ kg/m^ 3
self.v1_inputs = ['state_t',
'state_q0001',
'state_ps',
'pbuf_SOLIN',
'pbuf_LHFLX',
'pbuf_SHFLX']
self.v1_outputs = ['ptend_t',
'ptend_q0001',
'cam_out_NETSW',
'cam_out_FLWDS',
'cam_out_PRECSC',
'cam_out_PRECC',
'cam_out_SOLS',
'cam_out_SOLL',
'cam_out_SOLSD',
'cam_out_SOLLD']
self.var_lens = {#inputs
'state_t':60,
'state_q0001':60,
'state_ps':1,
'pbuf_SOLIN':1,
'pbuf_LHFLX':1,
'pbuf_SHFLX':1,
#outputs
'ptend_t':60,
'ptend_q0001':60,
'cam_out_NETSW':1,
'cam_out_FLWDS':1,
'cam_out_PRECSC':1,
'cam_out_PRECC':1,
'cam_out_SOLS':1,
'cam_out_SOLL':1,
'cam_out_SOLSD':1,
'cam_out_SOLLD':1
}
self.var_short_names = {'ptend_t':'$dT/dt$',
'ptend_q0001':'$dq/dt$',
'cam_out_NETSW':'NETSW',
'cam_out_FLWDS':'FLWDS',
'cam_out_PRECSC':'PRECSC',
'cam_out_PRECC':'PRECC',
'cam_out_SOLS':'SOLS',
'cam_out_SOLL':'SOLL',
'cam_out_SOLSD':'SOLSD',
'cam_out_SOLLD':'SOLLD'}
self.target_energy_conv = {'ptend_t':self.cp,
'ptend_q0001':self.lv,
'cam_out_NETSW':1.,
'cam_out_FLWDS':1.,
'cam_out_PRECSC':self.lv*self.rho_h20,
'cam_out_PRECC':self.lv*self.rho_h20,
'cam_out_SOLS':1.,
'cam_out_SOLL':1.,
'cam_out_SOLSD':1.,
'cam_out_SOLLD':1.
}
# for metrics
self.input_train = None
self.target_train = None
self.preds_train = None
self.samples_train = None
self.target_weighted_train = {}
self.preds_weighted_train = {}
self.samples_weighted_train = {}
self.metrics_train = []
self.metrics_idx_train = {}
self.metrics_var_train = {}
self.input_val = None
self.target_val = None
self.preds_val = None
self.samples_val = None
self.target_weighted_val = {}
self.preds_weighted_val = {}
self.samples_weighted_val = {}
self.metrics_val = []
self.metrics_idx_val = {}
self.metrics_var_val = {}
self.input_scoring = None
self.target_scoring = None
self.preds_scoring = None
self.samples_scoring = None
self.target_weighted_scoring = {}
self.preds_weighted_scoring = {}
self.samples_weighted_scoring = {}
self.metrics_scoring = []
self.metrics_idx_scoring = {}
self.metrics_var_scoring = {}
self.input_test = None
self.target_test = None
self.preds_test = None
self.samples_test = None
self.target_weighted_test = {}
self.preds_weighted_test = {}
self.samples_weighted_test = {}
self.metrics_test = []
self.metrics_idx_test = {}
self.metrics_var_test = {}
self.model_names = []
self.metrics_names = []
self.metrics_dict = {'MAE': self.calc_MAE,
'RMSE': self.calc_RMSE,
'R2': self.calc_R2,
'CRPS': self.calc_CRPS,
'bias': self.calc_bias
}
self.linecolors = ['#0072B2',
'#E69F00',
'#882255',
'#009E73',
'#D55E00'
]
def set_to_v1_vars(self):
'''
This function sets the inputs and outputs to the V1 subset.
'''
self.input_vars = self.v1_inputs
self.target_vars = self.v1_outputs
self.input_feature_len = 124
self.target_feature_len = 128
def get_xrdata(self, file, file_vars = None):
'''
This function reads in a file and returns an xarray dataset with the variables specified.
file_vars must be a list of strings.
'''
ds = xr.open_dataset(file, engine = 'netcdf4')
if file_vars is not None:
ds = ds[file_vars]
ds = ds.merge(self.grid_info[['lat','lon']])
ds = ds.where((ds['lat']>-999)*(ds['lat']<999), drop=True)
ds = ds.where((ds['lon']>-999)*(ds['lon']<999), drop=True)
return ds
def get_input(self, input_file):
'''
This function reads in a file and returns an xarray dataset with the input variables for the emulator.
'''
# read inputs
return self.get_xrdata(input_file, self.input_vars)
def get_target(self, input_file):
'''
This function reads in a file and returns an xarray dataset with the target variables for the emulator.
'''
# read inputs
ds_input = self.get_input(input_file)
ds_target = self.get_xrdata(input_file.replace('.mli.','.mlo.'))
# each timestep is 20 minutes which corresponds to 1200 seconds
ds_target['ptend_t'] = (ds_target['state_t'] - ds_input['state_t'])/1200 # T tendency [K/s]
ds_target['ptend_q0001'] = (ds_target['state_q0001'] - ds_input['state_q0001'])/1200 # Q tendency [kg/kg/s]
ds_target = ds_target[self.target_vars]
return ds_target
def set_regexps(self, data_split, regexps):
'''
This function sets the regular expressions used for getting the filelist for train, val, scoring, and test.
'''
assert data_split in ['train', 'val', 'scoring', 'test'], 'Provided data_split is not valid. Available options are train, val, scoring, and test.'
if data_split == 'train':
self.train_regexps = regexps
elif data_split == 'val':
self.val_regexps = regexps
elif data_split == 'scoring':
self.scoring_regexps = regexps
elif data_split == 'test':
self.test_regexps = regexps
def set_stride_sample(self, data_split, stride_sample):
'''
This function sets the stride_sample for train, val, scoring, and test.
'''
assert data_split in ['train', 'val', 'scoring', 'test'], 'Provided data_split is not valid. Available options are train, val, scoring, and test.'
if data_split == 'train':
self.train_stride_sample = stride_sample
elif data_split == 'val':
self.val_stride_sample = stride_sample
elif data_split == 'scoring':
self.scoring_stride_sample = stride_sample
elif data_split == 'test':
self.test_stride_sample = stride_sample
def set_filelist(self, data_split):
'''
This function sets the filelists corresponding to data splits for train, val, scoring, and test.
'''
filelist = []
assert data_split in ['train', 'val', 'scoring', 'test'], 'Provided data_split is not valid. Available options are train, val, scoring, and test.'
if data_split == 'train':
assert self.train_regexps is not None, 'regexps for train is not set.'
assert self.train_stride_sample is not None, 'stride_sample for train is not set.'
for regexp in self.train_regexps:
filelist = filelist + glob.glob(self.data_path + "*/" + regexp)
self.train_filelist = sorted(filelist)[::self.train_stride_sample]
elif data_split == 'val':
assert self.val_regexps is not None, 'regexps for val is not set.'
assert self.val_stride_sample is not None, 'stride_sample for val is not set.'
for regexp in self.val_regexps:
filelist = filelist + glob.glob(self.data_path + "*/" + regexp)
self.val_filelist = sorted(filelist)[::self.val_stride_sample]
elif data_split == 'scoring':
assert self.scoring_regexps is not None, 'regexps for scoring is not set.'
assert self.scoring_stride_sample is not None, 'stride_sample for scoring is not set.'
for regexp in self.scoring_regexps:
filelist = filelist + glob.glob(self.data_path + "*/" + regexp)
self.scoring_filelist = sorted(filelist)[::self.scoring_stride_sample]
elif data_split == 'test':
assert self.test_regexps is not None, 'regexps for test is not set.'
assert self.test_stride_sample is not None, 'stride_sample for test is not set.'
for regexp in self.test_regexps:
filelist = filelist + glob.glob(self.data_path + "*/" + regexp)
self.test_filelist = sorted(filelist)[::self.test_stride_sample]
def get_filelist(self, data_split):
'''
This function returns the filelist corresponding to data splits for train, val, scoring, and test.
'''
assert data_split in ['train', 'val', 'scoring', 'test'], 'Provided data_split is not valid. Available options are train, val, scoring, and test.'
if data_split == 'train':
assert self.train_filelist is not None, 'filelist for train is not set.'
return self.train_filelist
elif data_split == 'val':
assert self.val_filelist is not None, 'filelist for val is not set.'
return self.val_filelist
elif data_split == 'scoring':
assert self.scoring_filelist is not None, 'filelist for scoring is not set.'
return self.scoring_filelist
elif data_split == 'test':
assert self.test_filelist is not None, 'filelist for test is not set.'
return self.test_filelist
def load_ncdata_with_generator(self, data_split):
'''
This function works as a dataloader when training the emulator with raw netCDF files.
This can be used as a dataloader during training or it can be used to create entire datasets.
When used as a dataloader for training, I/O can slow down training considerably.
This function also normalizes the data.
mli corresponds to input
mlo corresponds to target
'''
filelist = self.get_filelist(data_split)
def gen():
for file in filelist:
# read inputs
ds_input = self.get_input(file)
# read targets
ds_target = self.get_target(file)
# normalization, scaling
ds_input = (ds_input - self.input_mean)/(self.input_max - self.input_min)
ds_target = ds_target*self.output_scale
# stack
# ds = ds.stack({'batch':{'sample','ncol'}})
ds_input = ds_input.stack({'batch':{'ncol'}})
ds_input = ds_input.to_stacked_array('mlvar', sample_dims=['batch'], name='mli')
# dso = dso.stack({'batch':{'sample','ncol'}})
ds_target = ds_target.stack({'batch':{'ncol'}})
ds_target = ds_target.to_stacked_array('mlvar', sample_dims=['batch'], name='mlo')
yield (ds_input.values, ds_target.values)
return tf.data.Dataset.from_generator(
gen,
output_types = (tf.float64, tf.float64),
output_shapes = ((None,124),(None,128))
)
def save_as_npy(self,
data_split,
save_path = '',
save_latlontime_dict = False):
'''
This function saves the training data as a .npy file. Prefix should be train or val.
'''
prefix = save_path + data_split
data_loader = self.load_ncdata_with_generator(data_split)
npy_iterator = list(data_loader.as_numpy_iterator())
npy_input = np.concatenate([npy_iterator[x][0] for x in range(len(npy_iterator))])
npy_target = np.concatenate([npy_iterator[x][1] for x in range(len(npy_iterator))])
with open(save_path + prefix + '_input.npy', 'wb') as f:
np.save(f, np.float32(npy_input))
with open(save_path + prefix + '_target.npy', 'wb') as f:
np.save(f, np.float32(npy_target))
if data_split == 'train':
data_files = self.train_filelist
elif data_split == 'val':
data_files = self.val_filelist
elif data_split == 'scoring':
data_files = self.scoring_filelist
elif data_split == 'test':
data_files = self.test_filelist
if save_latlontime_dict:
dates = [re.sub('^.*mli\.', '', x) for x in data_files]
dates = [re.sub('\.nc$', '', x) for x in dates]
repeat_dates = []
for date in dates:
for i in range(self.latlonnum):
repeat_dates.append(date)
latlontime = {i: [(self.grid_info['lat'].values[i%self.latlonnum], self.grid_info['lon'].values[i%self.latlonnum]), repeat_dates[i]] for i in range(npy_input.shape[0])}
with open(save_path + prefix + '_indextolatlontime.pkl', 'wb') as f:
pickle.dump(latlontime, f)
def reshape_npy(self, var_arr, var_arr_dim):
'''
This function reshapes the a variable in numpy such that time gets its own axis (instead of being num_samples x num_levels).
Shape of target would be (timestep, lat/lon combo, num_levels)
'''
var_arr = var_arr.reshape((int(var_arr.shape[0]/self.latlonnum), self.latlonnum, var_arr_dim))
return var_arr
@staticmethod
def ls(dir_path = ''):
'''
You can treat this as a Python wrapper for the bash command "ls".
'''
return os.popen(' '.join(['ls', dir_path])).read().splitlines()
@staticmethod
def set_plot_params():
'''
This function sets the plot parameters for matplotlib.
'''
plt.close('all')
plt.rcParams.update(plt.rcParamsDefault)
plt.rc('font', family='sans')
plt.rcParams.update({'font.size': 32,
'lines.linewidth': 2,
'axes.labelsize': 32,
'axes.titlesize': 32,
'xtick.labelsize': 32,
'ytick.labelsize': 32,
'legend.fontsize': 32,
'axes.linewidth': 2,
"pgf.texsystem": "pdflatex"
})
# %config InlineBackend.figure_format = 'retina'
# use the above line when working in a jupyter notebook
@staticmethod
def load_npy_file(load_path = ''):
'''
This function loads the prediction .npy file.
'''
with open(load_path, 'rb') as f:
pred = np.load(f)
return pred
@staticmethod
def load_h5_file(load_path = ''):
'''
This function loads the prediction .h5 file.
'''
hf = h5py.File(load_path, 'r')
pred = np.array(hf.get('pred'))
return pred
def set_pressure_grid(self, data_split):
'''
This function sets the pressure weighting for metrics.
'''
assert data_split in ['train', 'val', 'scoring', 'test'], 'Provided data_split is not valid. Available options are train, val, scoring, and test.'
if data_split == 'train':
assert self.input_train is not None
state_ps = self.input_train[:,120]*(self.input_max['state_ps'].values - self.input_min['state_ps'].values) + self.input_mean['state_ps'].values
state_ps = np.reshape(state_ps, (-1, self.latlonnum))
pressure_grid_p1 = np.array(self.grid_info['P0']*self.grid_info['hyai'])[:,np.newaxis,np.newaxis]
pressure_grid_p2 = self.grid_info['hybi'].values[:, np.newaxis, np.newaxis] * state_ps[np.newaxis, :, :]
self.pressure_grid_train = pressure_grid_p1 + pressure_grid_p2
self.dp_train = self.pressure_grid_train[1:61,:,:] - self.pressure_grid_train[0:60,:,:]
self.dp_train = self.dp_train.transpose((1,2,0))
elif data_split == 'val':
assert self.input_val is not None
state_ps = self.input_val[:,120]*(self.input_max['state_ps'].values - self.input_min['state_ps'].values) + self.input_mean['state_ps'].values
state_ps = np.reshape(state_ps, (-1, self.latlonnum))
pressure_grid_p1 = np.array(self.grid_info['P0']*self.grid_info['hyai'])[:,np.newaxis,np.newaxis]
pressure_grid_p2 = self.grid_info['hybi'].values[:, np.newaxis, np.newaxis] * state_ps[np.newaxis, :, :]
self.pressure_grid_val = pressure_grid_p1 + pressure_grid_p2
self.dp_val = self.pressure_grid_val[1:61,:,:] - self.pressure_grid_val[0:60,:,:]
self.dp_val = self.dp_val.transpose((1,2,0))
elif data_split == 'scoring':
assert self.input_scoring is not None
state_ps = self.input_scoring[:,120]*(self.input_max['state_ps'].values - self.input_min['state_ps'].values) + self.input_mean['state_ps'].values
state_ps = np.reshape(state_ps, (-1, self.latlonnum))
pressure_grid_p1 = np.array(self.grid_info['P0']*self.grid_info['hyai'])[:,np.newaxis,np.newaxis]
pressure_grid_p2 = self.grid_info['hybi'].values[:, np.newaxis, np.newaxis] * state_ps[np.newaxis, :, :]
self.pressure_grid_scoring = pressure_grid_p1 + pressure_grid_p2
self.dp_scoring = self.pressure_grid_scoring[1:61,:,:] - self.pressure_grid_scoring[0:60,:,:]
self.dp_scoring = self.dp_scoring.transpose((1,2,0))
elif data_split == 'test':
assert self.input_test is not None
state_ps = self.input_test[:,120]*(self.input_max['state_ps'].values - self.input_min['state_ps'].values) + self.input_mean['state_ps'].values
state_ps = np.reshape(state_ps, (-1, self.latlonnum))
pressure_grid_p1 = np.array(self.grid_info['P0']*self.grid_info['hyai'])[:,np.newaxis,np.newaxis]
pressure_grid_p2 = self.grid_info['hybi'].values[:, np.newaxis, np.newaxis] * state_ps[np.newaxis, :, :]
self.pressure_grid_test = pressure_grid_p1 + pressure_grid_p2
self.dp_test = self.pressure_grid_test[1:61,:,:] - self.pressure_grid_test[0:60,:,:]
self.dp_test = self.dp_test.transpose((1,2,0))
def get_pressure_grid_plotting(self, data_split):
'''
This function creates the temporally and zonally averaged pressure grid corresponding to a given data split.
'''
filelist = self.get_filelist(data_split)
ps = np.concatenate([self.get_xrdata(file, ['state_ps'])['state_ps'].values[np.newaxis, :] for file in tqdm(filelist)], axis = 0)[:, :, np.newaxis]
hyam_component = self.hyam[np.newaxis, np.newaxis, :]*self.p0
hybm_component = self.hybm[np.newaxis, np.newaxis, :]*ps
pressures = np.mean(hyam_component + hybm_component, axis = 0)
pg_lats = []
def find_keys(dictionary, value):
keys = []
for key, val in dictionary.items():
if val[0] == value:
keys.append(key)
return keys
for lat in self.lats:
indices = find_keys(self.indextolatlon, lat)
pg_lats.append(np.mean(pressures[indices, :], axis = 0)[:, np.newaxis])
pressure_grid_plotting = np.concatenate(pg_lats, axis = 1)
return pressure_grid_plotting
def output_weighting(self, output, data_split):
'''
This function does four transformations, and assumes we are using V1 variables:
[0] Undos the output scaling
[1] Weight vertical levels by dp/g
[2] Weight horizontal area of each grid cell by a[x]/mean(a[x])
[3] Unit conversion to a common energy unit
'''
assert data_split in ['train', 'val', 'scoring', 'test'], 'Provided data_split is not valid. Available options are train, val, scoring, and test.'
num_samples = output.shape[0]
heating = output[:,:60].reshape((int(num_samples/self.latlonnum), self.latlonnum, 60))
moistening = output[:,60:120].reshape((int(num_samples/self.latlonnum), self.latlonnum, 60))
netsw = output[:,120].reshape((int(num_samples/self.latlonnum), self.latlonnum))
flwds = output[:,121].reshape((int(num_samples/self.latlonnum), self.latlonnum))
precsc = output[:,122].reshape((int(num_samples/self.latlonnum), self.latlonnum))
precc = output[:,123].reshape((int(num_samples/self.latlonnum), self.latlonnum))
sols = output[:,124].reshape((int(num_samples/self.latlonnum), self.latlonnum))
soll = output[:,125].reshape((int(num_samples/self.latlonnum), self.latlonnum))
solsd = output[:,126].reshape((int(num_samples/self.latlonnum), self.latlonnum))
solld = output[:,127].reshape((int(num_samples/self.latlonnum), self.latlonnum))
# heating = heating.transpose((2,0,1))
# moistening = moistening.transpose((2,0,1))
# scalar_outputs = scalar_outputs.transpose((2,0,1))
# [0] Undo output scaling
heating = heating/self.output_scale['ptend_t'].values[np.newaxis, np.newaxis, :]
moistening = moistening/self.output_scale['ptend_q0001'].values[np.newaxis, np.newaxis, :]
netsw = netsw/self.output_scale['cam_out_NETSW'].values
flwds = flwds/self.output_scale['cam_out_FLWDS'].values
precsc = precsc/self.output_scale['cam_out_PRECSC'].values
precc = precc/self.output_scale['cam_out_PRECC'].values
sols = sols/self.output_scale['cam_out_SOLS'].values
soll = soll/self.output_scale['cam_out_SOLL'].values
solsd = solsd/self.output_scale['cam_out_SOLSD'].values
solld = solld/self.output_scale['cam_out_SOLLD'].values
# [1] Weight vertical levels by dp/g
# only for vertically-resolved variables, e.g. ptend_{t,q0001}
# dp/g = -\rho * dz
if data_split == 'train':
dp = self.dp_train
elif data_split == 'val':
dp = self.dp_val
elif data_split == 'scoring':
dp = self.dp_scoring
elif data_split == 'test':
dp = self.dp_test
heating = heating * dp/self.grav
moistening = moistening * dp/self.grav
# [2] weight by area
heating = heating * self.area_wgt[np.newaxis, :, np.newaxis]
moistening = moistening * self.area_wgt[np.newaxis, :, np.newaxis]
netsw = netsw * self.area_wgt[np.newaxis, :]
flwds = flwds * self.area_wgt[np.newaxis, :]
precsc = precsc * self.area_wgt[np.newaxis, :]
precc = precc * self.area_wgt[np.newaxis, :]
sols = sols * self.area_wgt[np.newaxis, :]
soll = soll * self.area_wgt[np.newaxis, :]
solsd = solsd * self.area_wgt[np.newaxis, :]
solld = solld * self.area_wgt[np.newaxis, :]
# [3] unit conversion
heating = heating * self.target_energy_conv['ptend_t']
moistening = moistening * self.target_energy_conv['ptend_q0001']
netsw = netsw * self.target_energy_conv['cam_out_NETSW']
flwds = flwds * self.target_energy_conv['cam_out_FLWDS']
precsc = precsc * self.target_energy_conv['cam_out_PRECSC']
precc = precc * self.target_energy_conv['cam_out_PRECC']
sols = sols * self.target_energy_conv['cam_out_SOLS']
soll = soll * self.target_energy_conv['cam_out_SOLL']
solsd = solsd * self.target_energy_conv['cam_out_SOLSD']
solld = solld * self.target_energy_conv['cam_out_SOLLD']
return {'ptend_t':heating,
'ptend_q0001':moistening,
'cam_out_NETSW':netsw,
'cam_out_FLWDS':flwds,
'cam_out_PRECSC':precsc,
'cam_out_PRECC':precc,
'cam_out_SOLS':sols,
'cam_out_SOLL':soll,
'cam_out_SOLSD':solsd,
'cam_out_SOLLD':solld}
def reweight_target(self, data_split):
'''
data_split should be train, val, scoring, or test
weights target variables assuming V1 outputs using the output_weighting function
'''
assert data_split in ['train', 'val', 'scoring', 'test'], 'Provided data_split is not valid. Available options are train, val, scoring, and test.'
if data_split == 'train':
assert self.target_train is not None
self.target_weighted_train = self.output_weighting(self.target_train, data_split)
elif data_split == 'val':
assert self.target_val is not None
self.target_weighted_val = self.output_weighting(self.target_val, data_split)
elif data_split == 'scoring':
assert self.target_scoring is not None
self.target_weighted_scoring = self.output_weighting(self.target_scoring, data_split)
elif data_split == 'test':
assert self.target_test is not None
self.target_weighted_test = self.output_weighting(self.target_test, data_split)
def reweight_preds(self, data_split):
'''
weights predictions assuming V1 outputs using the output_weighting function
'''
assert data_split in ['train', 'val', 'scoring', 'test'], 'Provided data_split is not valid. Available options are train, val, scoring, and test.'
assert self.model_names is not None
if data_split == 'train':
assert self.preds_train is not None
for model_name in self.model_names:
self.preds_weighted_train[model_name] = self.output_weighting(self.preds_train[model_name], data_split)
elif data_split == 'val':
assert self.preds_val is not None
for model_name in self.model_names:
self.preds_weighted_val[model_name] = self.output_weighting(self.preds_val[model_name], data_split)
elif data_split == 'scoring':
assert self.preds_scoring is not None
for model_name in self.model_names:
self.preds_weighted_scoring[model_name] = self.output_weighting(self.preds_scoring[model_name], data_split)
elif data_split == 'test':
assert self.preds_test is not None
for model_name in self.model_names:
self.preds_weighted_test[model_name] = self.output_weighting(self.preds_test[model_name], data_split)
def calc_MAE(self, pred, target, avg_grid = True):
'''
calculate 'globally averaged' mean absolute error
for vertically-resolved variables, shape should be time x grid x level
for scalars, shape should be time x grid
returns vector of length level or 1
'''
assert pred.shape[1] == self.latlonnum
assert pred.shape == target.shape
mae = np.abs(pred - target).mean(axis = 0)
if avg_grid:
return mae.mean(axis = 0) # we decided to average globally at end
else:
return mae
def calc_RMSE(self, pred, target, avg_grid = True):
'''
calculate 'globally averaged' root mean squared error
for vertically-resolved variables, shape should be time x grid x level
for scalars, shape should be time x grid
returns vector of length level or 1
'''
assert pred.shape[1] == self.latlonnum
assert pred.shape == target.shape
sq_diff = (pred - target)**2
rmse = np.sqrt(sq_diff.mean(axis = 0)) # mean over time
if avg_grid:
return rmse.mean(axis = 0) # we decided to separately average globally at end
else:
return rmse
def calc_R2(self, pred, target, avg_grid = True):
'''
calculate 'globally averaged' R-squared
for vertically-resolved variables, input shape should be time x grid x level
for scalars, input shape should be time x grid
returns vector of length level or 1
'''
assert pred.shape[1] == self.latlonnum
assert pred.shape == target.shape
sq_diff = (pred - target)**2
tss_time = (target - target.mean(axis = 0)[np.newaxis, ...])**2 # mean over time
r_squared = 1 - sq_diff.sum(axis = 0)/tss_time.sum(axis = 0) # sum over time
if avg_grid:
return r_squared.mean(axis = 0) # we decided to separately average globally at end
else:
return r_squared
def calc_bias(self, pred, target, avg_grid = True):
'''
calculate bias
for vertically-resolved variables, input shape should be time x grid x level
for scalars, input shape should be time x grid
returns vector of length level or 1
'''
assert pred.shape[1] == self.latlonnum
assert pred.shape == target.shape
bias = pred.mean(axis = 0) - target.mean(axis = 0)
if avg_grid:
return bias.mean(axis = 0) # we decided to separately average globally at end
else:
return bias
def calc_CRPS(self, preds, target, avg_grid = True):
'''
calculate 'globally averaged' continuous ranked probability score
for vertically-resolved variables, input shape should be time x grid x level x num_crps_samples
for scalars, input shape should be time x grid x num_crps_samples
returns vector of length level or 1
'''
assert preds.shape[1] == self.latlonnum
num_crps = preds.shape[-1]
mae = np.mean(np.abs(preds - target[..., np.newaxis]), axis = (0, -1)) # mean over time and crps samples
diff = preds[..., 1:] - preds[..., :-1]
count = np.arange(1, num_crps) * np.arange(num_crps - 1, 0, -1)
spread = (diff * count[np.newaxis, np.newaxis, np.newaxis, :]).mean(axis = (0, -1)) # mean over time and crps samples
crps = mae - spread/(num_crps*(num_crps-1))
# already divided by two in spread by exploiting symmetry
if avg_grid:
return crps.mean(axis = 0) # we decided to separately average globally at end
else:
return crps
def create_metrics_df(self, data_split):
'''
creates a dataframe of metrics for each model
'''
assert data_split in ['train', 'val', 'scoring', 'test'], \
'Provided data_split is not valid. Available options are train, val, scoring, and test.'
assert len(self.model_names) != 0
assert len(self.metrics_names) != 0
assert len(self.target_vars) != 0
assert self.target_feature_len is not None
if data_split == 'train':
assert len(self.preds_weighted_train) != 0
assert len(self.target_weighted_train) != 0
for model_name in self.model_names:
df_var = pd.DataFrame(columns = self.metrics_names, index = self.target_vars)
df_var.index.name = 'variable'
df_idx = pd.DataFrame(columns = self.metrics_names, index = range(self.target_feature_len))
df_idx.index.name = 'output_idx'
for metric_name in self.metrics_names:
current_idx = 0
for target_var in self.target_vars:
metric = self.metrics_dict[metric_name](self.preds_weighted_train[model_name][target_var], self.target_weighted_train[target_var])
df_var.loc[target_var, metric_name] = np.mean(metric)
df_idx.loc[current_idx:current_idx + self.var_lens[target_var] - 1, metric_name] = np.atleast_1d(metric)
current_idx += self.var_lens[target_var]
self.metrics_var_train[model_name] = df_var
self.metrics_idx_train[model_name] = df_idx
elif data_split == 'val':
assert len(self.preds_weighted_val) != 0
assert len(self.target_weighted_val) != 0
for model_name in self.model_names:
df_var = pd.DataFrame(columns = self.metrics_names, index = self.target_vars)
df_var.index.name = 'variable'
df_idx = pd.DataFrame(columns = self.metrics_names, index = range(self.target_feature_len))
df_idx.index.name = 'output_idx'
for metric_name in self.metrics_names:
current_idx = 0
for target_var in self.target_vars:
metric = self.metrics_dict[metric_name](self.preds_weighted_val[model_name][target_var], self.target_weighted_val[target_var])
df_var.loc[target_var, metric_name] = np.mean(metric)
df_idx.loc[current_idx:current_idx + self.var_lens[target_var] - 1, metric_name] = np.atleast_1d(metric)
current_idx += self.var_lens[target_var]
self.metrics_var_val[model_name] = df_var
self.metrics_idx_val[model_name] = df_idx
elif data_split == 'scoring':
assert len(self.preds_weighted_scoring) != 0
assert len(self.target_weighted_scoring) != 0
for model_name in self.model_names:
df_var = pd.DataFrame(columns = self.metrics_names, index = self.target_vars)
df_var.index.name = 'variable'
df_idx = pd.DataFrame(columns = self.metrics_names, index = range(self.target_feature_len))
df_idx.index.name = 'output_idx'
for metric_name in self.metrics_names:
current_idx = 0
for target_var in self.target_vars:
metric = self.metrics_dict[metric_name](self.preds_weighted_scoring[model_name][target_var], self.target_weighted_scoring[target_var])
df_var.loc[target_var, metric_name] = np.mean(metric)
df_idx.loc[current_idx:current_idx + self.var_lens[target_var] - 1, metric_name] = np.atleast_1d(metric)
current_idx += self.var_lens[target_var]
self.metrics_var_scoring[model_name] = df_var
self.metrics_idx_scoring[model_name] = df_idx
elif data_split == 'test':
assert len(self.preds_weighted_test) != 0
assert len(self.target_weighted_test) != 0
for model_name in self.model_names:
df_var = pd.DataFrame(columns = self.metrics_names, index = self.target_vars)
df_var.index.name = 'variable'
df_idx = pd.DataFrame(columns = self.metrics_names, index = range(self.target_feature_len))
df_idx.index.name = 'output_idx'
for metric_name in self.metrics_names:
current_idx = 0
for target_var in self.target_vars:
metric = self.metrics_dict[metric_name](self.preds_weighted_test[model_name][target_var], self.target_weighted_test[target_var])
df_var.loc[target_var, metric_name] = np.mean(metric)
df_idx.loc[current_idx:current_idx + self.var_lens[target_var] - 1, metric_name] = np.atleast_1d(metric)
current_idx += self.var_lens[target_var]
self.metrics_var_test[model_name] = df_var
self.metrics_idx_test[model_name] = df_idx
def reshape_daily(self, output):
'''
This function returns two numpy arrays, one for each vertically resolved variable (heating and moistening).
Dimensions of expected input are num_samples by 128 (number of target features).
Output argument is espected to be have dimensions of num_samples by features.
Heating is expected to be the first feature, and moistening is expected to be the second feature.
Data is expected to use a stride_sample of 6. (12 samples per day, 20 min timestep).
'''
num_samples = output.shape[0]
heating = output[:,:60].reshape((int(num_samples/self.latlonnum), self.latlonnum, 60))
moistening = output[:,60:120].reshape((int(num_samples/self.latlonnum), self.latlonnum, 60))
heating_daily = np.mean(heating.reshape((heating.shape[0]//12, 12, self.latlonnum, 60)), axis = 1) # Nday x lotlonnum x 60
moistening_daily = np.mean(moistening.reshape((moistening.shape[0]//12, 12, self.latlonnum, 60)), axis = 1) # Nday x lotlonnum x 60
heating_daily_long = []
moistening_daily_long = []
for i in range(len(self.lats)):
heating_daily_long.append(np.mean(heating_daily[:,self.lat_indices_list[i],:],axis=1))
moistening_daily_long.append(np.mean(moistening_daily[:,self.lat_indices_list[i],:],axis=1))
heating_daily_long = np.array(heating_daily_long) # lat x Nday x 60
moistening_daily_long = np.array(moistening_daily_long) # lat x Nday x 60
return heating_daily_long, moistening_daily_long
def plot_r2_analysis(self, pressure_grid_plotting, save_path = ''):
'''
This function plots the R2 pressure latitude figure shown in the SI.
'''
self.set_plot_params()
n_model = len(self.model_names)
fig, ax = plt.subplots(2,n_model, figsize=(n_model*12,18))
y = np.array(range(60))
X, Y = np.meshgrid(np.sin(self.lats*np.pi/180), y)
Y = pressure_grid_plotting/100
test_heat_daily_long, test_moist_daily_long = self.reshape_daily(self.target_scoring)
for i, model_name in enumerate(self.model_names):
pred_heat_daily_long, pred_moist_daily_long = self.reshape_daily(self.preds_scoring[model_name])
coeff = 1 - np.sum( (pred_heat_daily_long-test_heat_daily_long)**2, axis=1)/np.sum( (test_heat_daily_long-np.mean(test_heat_daily_long, axis=1)[:,None,:])**2, axis=1)
coeff = coeff[self.sort_lat_key,:]
coeff = coeff.T
contour_plot = ax[0,i].pcolor(X, Y, coeff,cmap='Blues', vmin = 0, vmax = 1) # pcolormesh
ax[0,i].contour(X, Y, coeff, [0.7], colors='orange', linewidths=[4])
ax[0,i].contour(X, Y, coeff, [0.9], colors='yellow', linewidths=[4])
ax[0,i].set_ylim(ax[0,i].get_ylim()[::-1])
ax[0,i].set_title(self.model_names[i] + " - Heating")
ax[0,i].set_xticks([])
coeff = 1 - np.sum( (pred_moist_daily_long-test_moist_daily_long)**2, axis=1)/np.sum( (test_moist_daily_long-np.mean(test_moist_daily_long, axis=1)[:,None,:])**2, axis=1)
coeff = coeff[self.sort_lat_key,:]
coeff = coeff.T
contour_plot = ax[1,i].pcolor(X, Y, coeff,cmap='Blues', vmin = 0, vmax = 1) # pcolormesh
ax[1,i].contour(X, Y, coeff, [0.7], colors='orange', linewidths=[4])
ax[1,i].contour(X, Y, coeff, [0.9], colors='yellow', linewidths=[4])
ax[1,i].set_ylim(ax[1,i].get_ylim()[::-1])
ax[1,i].set_title(self.model_names[i] + " - Moistening")
ax[1,i].xaxis.set_ticks([np.sin(-50/180*np.pi), 0, np.sin(50/180*np.pi)])
ax[1,i].xaxis.set_ticklabels(['50$^\circ$S', '0$^\circ$', '50$^\circ$N'])
ax[1,i].xaxis.set_tick_params(width = 2)
if i != 0:
ax[0,i].set_yticks([])
ax[1,i].set_yticks([])
# lines below for x and y label axes are valid if 3 models are considered
# we want to put only one label for each axis
# if nbr of models is different from 3 please adjust label location to center it
#ax[1,1].xaxis.set_label_coords(-0.10,-0.10)
ax[0,0].set_ylabel("Pressure [hPa]")
ax[0,0].yaxis.set_label_coords(-0.2,-0.09) # (-1.38,-0.09)
ax[0,0].yaxis.set_ticks([1000,800,600,400,200,0])
ax[1,0].yaxis.set_ticks([1000,800,600,400,200,0])
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.82, 0.12, 0.02, 0.76])
cb = fig.colorbar(contour_plot, cax=cbar_ax)
cb.set_label("Skill Score "+r'$\left(\mathrm{R^{2}}\right)$',labelpad=50.1)
plt.suptitle("Baseline Models Skill for Vertically Resolved Tendencies", y = 0.97)
plt.subplots_adjust(hspace=0.13)
plt.show()
plt.savefig(save_path + 'press_lat_diff_models.png', bbox_inches='tight', pad_inches=0.1 , dpi = 300)
@staticmethod
def reshape_input_for_cnn(npy_input, save_path = ''):
'''
This function reshapes a numpy input array to be compatible with CNN training.
Each variable becomes its own channel.
For the input there are 6 channels, each with 60 vertical levels.
The last 4 channels correspond to scalars repeated across all 60 levels.
This is for V1 data only! (V2 data has more variables)
'''
npy_input_cnn = np.stack([
npy_input[:, 0:60],
npy_input[:, 60:120],
np.repeat(npy_input[:, 120][:, np.newaxis], 60, axis = 1),
np.repeat(npy_input[:, 121][:, np.newaxis], 60, axis = 1),
np.repeat(npy_input[:, 122][:, np.newaxis], 60, axis = 1),
np.repeat(npy_input[:, 123][:, np.newaxis], 60, axis = 1)], axis = 2)
if save_path != '':
with open(save_path + 'train_input_cnn.npy', 'wb') as f:
np.save(f, np.float32(npy_input_cnn))
return npy_input_cnn
@staticmethod
def reshape_target_for_cnn(npy_target, save_path = ''):
'''
This function reshapes a numpy target array to be compatible with CNN training.
Each variable becomes its own channel.
For the input there are 6 channels, each with 60 vertical levels.
The last 4 channels correspond to scalars repeated across all 60 levels.
This is for V1 data only! (V2 data has more variables)
'''
npy_target_cnn = np.stack([
npy_target[:, 0:60],
npy_target[:, 60:120],
np.repeat(npy_target[:, 120][:, np.newaxis], 60, axis = 1),
np.repeat(npy_target[:, 121][:, np.newaxis], 60, axis = 1),
np.repeat(npy_target[:, 122][:, np.newaxis], 60, axis = 1),
np.repeat(npy_target[:, 123][:, np.newaxis], 60, axis = 1),
np.repeat(npy_target[:, 124][:, np.newaxis], 60, axis = 1),
np.repeat(npy_target[:, 125][:, np.newaxis], 60, axis = 1),
np.repeat(npy_target[:, 126][:, np.newaxis], 60, axis = 1),
np.repeat(npy_target[:, 127][:, np.newaxis], 60, axis = 1)], axis = 2)
if save_path != '':
with open(save_path + 'train_target_cnn.npy', 'wb') as f:
np.save(f, np.float32(npy_target_cnn))
return npy_target_cnn
@staticmethod
def reshape_target_from_cnn(npy_predict_cnn, save_path = ''):
'''
This function reshapes CNN target to (num_samples, 128) for standardized metrics.
This is for V1 data only! (V2 data has more variables)
'''
npy_predict_cnn_reshaped = np.concatenate([
npy_predict_cnn[:,:,0],
npy_predict_cnn[:,:,1],
np.mean(npy_predict_cnn[:,:,2], axis = 1)[:, np.newaxis],
np.mean(npy_predict_cnn[:,:,3], axis = 1)[:, np.newaxis],
np.mean(npy_predict_cnn[:,:,4], axis = 1)[:, np.newaxis],
np.mean(npy_predict_cnn[:,:,5], axis = 1)[:, np.newaxis],
np.mean(npy_predict_cnn[:,:,6], axis = 1)[:, np.newaxis],
np.mean(npy_predict_cnn[:,:,7], axis = 1)[:, np.newaxis],
np.mean(npy_predict_cnn[:,:,8], axis = 1)[:, np.newaxis],
np.mean(npy_predict_cnn[:,:,9], axis = 1)[:, np.newaxis]], axis = 1)
if save_path != '':
with open(save_path + 'cnn_predict_reshaped.npy', 'wb') as f:
np.save(f, np.float32(npy_predict_cnn_reshaped))
return npy_predict_cnn_reshaped
|