import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from typing import Dict, Tuple import os from tqdm import tqdm import wandb from ..models.encoder import SpeakerEncoder from ..configs.config import Config, TrainingConfig class MetaTrainer: """元学习训练器:实现少样本语音克隆的训练过程""" def __init__( self, model: SpeakerEncoder, config: Config, use_wandb: bool = True ): self.model = model self.config = config self.use_wandb = use_wandb self.device = torch.device(config.training.device) self.model = self.model.to(self.device) self.optimizer = optim.Adam( self.model.parameters(), lr=config.training.learning_rate ) self.criterion = nn.CrossEntropyLoss() if use_wandb: wandb.init(project="voice-cloning", config=config) def compute_loss( self, support_data: Dict[str, torch.Tensor], query_data: Dict[str, torch.Tensor] ) -> Tuple[torch.Tensor, float]: """ 计算元学习损失 Args: support_data: - mel_spec: [n_way*k_shot, n_mels, time] - speaker_ids: [n_way*k_shot] query_data: - mel_spec: [n_way*k_query, n_mels, time] - speaker_ids: [n_way*k_query] Returns: loss: 标量损失值 acc: 准确率 """ # 获取支持集和查询集的嵌入向量 support_mel = support_data['mel_spec'].to(self.device) # [n_way*k_shot, n_mels, time] query_mel = query_data['mel_spec'].to(self.device) # [n_way*k_query, n_mels, time] # 获取嵌入向量 support_embeds = self.model(support_mel) # [n_way*k_shot, embedding_dim] query_embeds = self.model(query_mel) # [n_way*k_query, embedding_dim] # 计算支持集的质心 centroids = [] # 将存储每个说话人的质心 for speaker_idx in range(self.config.meta_learning.n_way): speaker_mask = (support_data['speaker_ids'] == speaker_idx).to(self.device) speaker_embeds = support_embeds[speaker_mask] # [k_shot, embedding_dim] centroid = speaker_embeds.mean(dim=0) # [embedding_dim] centroids.append(centroid) centroids = torch.stack(centroids) # [n_way, embedding_dim] # 计算查询集样本与各个质心的相似度 similarities = torch.matmul(query_embeds, centroids.T) # [n_way*k_query, n_way] # 计算分类损失 target = query_data['speaker_ids'].to(self.device) # [n_way*k_query] loss = self.criterion(similarities, target) # 计算准确率 pred = similarities.argmax(dim=1) # [n_way*k_query] acc = (pred == target).float().mean().item() return loss, acc def train_epoch(self, dataloader: DataLoader) -> Tuple[float, float]: """训练一个epoch""" self.model.train() total_loss = 0 total_acc = 0 with tqdm(dataloader, desc="Training") as pbar: for batch_idx, (support_batch, query_batch) in enumerate(pbar): self.optimizer.zero_grad() loss, acc = self.compute_loss(support_batch, query_batch) loss.backward() # 梯度裁剪 torch.nn.utils.clip_grad_norm_(self.model.parameters(), 3.0) self.optimizer.step() total_loss += loss.item() total_acc += acc pbar.set_postfix({ 'loss': total_loss / (batch_idx + 1), 'acc': total_acc / (batch_idx + 1) }) if self.use_wandb: wandb.log({ 'batch_loss': loss.item(), 'batch_acc': acc }) avg_loss = total_loss / len(dataloader) avg_acc = total_acc / len(dataloader) return avg_loss, avg_acc def validate(self, dataloader: DataLoader) -> Tuple[float, float]: """验证模型""" self.model.eval() total_loss = 0 total_acc = 0 with torch.no_grad(): for support_batch, query_batch in dataloader: loss, acc = self.compute_loss(support_batch, query_batch) total_loss += loss.item() total_acc += acc avg_loss = total_loss / len(dataloader) avg_acc = total_acc / len(dataloader) return avg_loss, avg_acc def save_checkpoint(self, epoch: int, loss: float, acc: float): """保存检查点""" checkpoint = { 'epoch': epoch, 'model_state_dict': self.model.state_dict(), 'optimizer_state_dict': self.optimizer.state_dict(), 'loss': loss, 'acc': acc } checkpoint_path = os.path.join( self.config.training.checkpoint_dir, f'checkpoint_epoch_{epoch}.pt' ) os.makedirs(self.config.training.checkpoint_dir, exist_ok=True) torch.save(checkpoint, checkpoint_path) def load_checkpoint(self, checkpoint_path: str): """加载检查点""" checkpoint = torch.load(checkpoint_path) self.model.load_state_dict(checkpoint['model_state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) return checkpoint['epoch'], checkpoint['loss'], checkpoint['acc']