File size: 7,132 Bytes
9580089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9580089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9580089
 
a03d4c1
 
 
4ecc033
a03d4c1
4ecc033
a03d4c1
4ecc033
a03d4c1
9580089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9580089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ecc033
 
 
 
 
 
 
 
a03d4c1
4ecc033
 
 
9580089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torchaudio
import numpy as np
from pathlib import Path
from typing import List, Union
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from speechbrain.pretrained import EncoderClassifier
import tempfile
import os

class VoiceCloneSystem:
    """语音克隆系统:将输入文本转换为目标说话人的语音"""
    
    def __init__(self, device: str = "cpu"):
        """
        初始化语音克隆系统
        
        Args:
            device: 使用的设备,'cpu' 或 'cuda'
        """
        self.device = device
        print("正在加载模型...")
        
        # 加载说话人编码器
        self.speaker_encoder = EncoderClassifier.from_hparams(
            source="speechbrain/spkrec-xvect-voxceleb",
            savedir="tmp/spkrec-xvect-voxceleb",
            run_opts={"device": device}
        )
        
        # 加载文本到语音模型
        self.processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
        self.tts_model = SpeechT5ForTextToSpeech.from_pretrained(
            "microsoft/speecht5_tts"
        ).to(device)
        
        # 加载声码器
        self.vocoder = SpeechT5HifiGan.from_pretrained(
            "microsoft/speecht5_hifigan"
        ).to(device)
        
        print("模型加载完成!")
        
    def process_audio(self, waveform: torch.Tensor, sr: int) -> torch.Tensor:
        """
        处理音频:重采样和转换为单声道
        
        Args:
            waveform: 输入音频波形
            sr: 采样率
            
        Returns:
            处理后的音频波形
        """
        # 重采样到16kHz
        if sr != 16000:
            waveform = torchaudio.functional.resample(waveform, sr, 16000)
        
        # 确保音频是单声道
        if waveform.shape[0] > 1:
            waveform = torch.mean(waveform, dim=0, keepdim=True)
        
        # 标准化音频长度(3秒)
        target_length = 16000 * 3
        current_length = waveform.shape[1]
        
        if current_length > target_length:
            # 如果太长,截取中间部分
            start = (current_length - target_length) // 2
            waveform = waveform[:, start:start + target_length]
        elif current_length < target_length:
            # 如果太短,用0填充
            padding = torch.zeros(1, target_length - current_length)
            waveform = torch.cat([waveform, padding], dim=1)
            
        return waveform
        
    def extract_speaker_embedding(
        self,
        audio_paths: List[Union[str, Path]]
    ) -> torch.Tensor:
        """
        从参考音频中提取说话人特征
        
        Args:
            audio_paths: 参考音频文件路径列表
            
        Returns:
            说话人特征向量
        """
        embeddings = []
        
        for audio_path in audio_paths:
            try:
                # 加载音频
                waveform, sr = torchaudio.load(str(audio_path))
                
                # 处理音频
                waveform = self.process_audio(waveform, sr)
                
                # 提取特征
                with torch.no_grad():
                    # 确保输入维度正确 [batch, time]
                    if waveform.dim() == 2:
                        waveform = waveform.squeeze(0)
                    
                    # 提取特征并处理维度
                    embedding = self.speaker_encoder.encode_batch(waveform.unsqueeze(0).to(self.device))
                    embedding = embedding.squeeze()  # 移除所有维度为1的维度
                    
                    # 打印中间结果
                    print(f"Raw embedding shape: {embedding.shape}")
                    
                    embeddings.append(embedding)
                    
            except Exception as e:
                print(f"Error processing audio {audio_path}: {str(e)}")
                raise
        
        # 计算平均特征
        mean_embedding = torch.stack(embeddings).mean(dim=0)
        
        # 确保最终维度正确 [1, 512]
        if mean_embedding.dim() == 1:
            mean_embedding = mean_embedding.unsqueeze(0)
        
        # 打印最终维度
        print(f"Final embedding shape: {mean_embedding.shape}")
        
        return mean_embedding
        
    def generate_speech(
        self,
        text: str,
        speaker_embedding: torch.Tensor
    ) -> torch.Tensor:
        """
        生成语音
        
        Args:
            text: 输入文本
            speaker_embedding: 说话人特征向量
            
        Returns:
            生成的语音波形
        """
        try:
            # 处理输入文本
            inputs = self.processor(text=text, return_tensors="pt")
            
            # 确保说话人特征维度正确
            if speaker_embedding.dim() != 2 or speaker_embedding.size(1) != 512:
                raise ValueError(f"Speaker embedding should have shape [1, 512], but got {speaker_embedding.shape}")
            
            # 生成语音
            speech = self.tts_model.generate_speech(
                inputs["input_ids"].to(self.device),
                speaker_embedding.to(self.device),
                vocoder=self.vocoder
            )
            
            return speech
            
        except Exception as e:
            print(f"Error in generate_speech: {str(e)}")
            raise
        
    def clone_voice(
        self,
        text: str,
        reference_audio_paths: List[Union[str, Path]]
    ) -> torch.Tensor:
        """
        主函数:克隆声音
        
        Args:
            text: 要转换的文本
            reference_audio_paths: 参考音频文件路径列表
            
        Returns:
            生成的语音波形
        """
        try:
            # 1. 提取说话人特征
            speaker_embedding = self.extract_speaker_embedding(reference_audio_paths)
            
            # 2. 生成语音
            speech = self.generate_speech(text, speaker_embedding)
            
            return speech
            
        except Exception as e:
            print(f"Error in clone_voice: {str(e)}")
            raise
        
    def save_audio(
        self,
        waveform: torch.Tensor,
        output_path: Union[str, Path],
        sample_rate: int = 16000
    ):
        """
        保存音频文件
        
        Args:
            waveform: 音频波形
            output_path: 输出文件路径
            sample_rate: 采样率
        """
        try:
            # 确保输出目录存在
            output_path = Path(output_path)
            output_path.parent.mkdir(parents=True, exist_ok=True)
            
            # 保存音频
            torchaudio.save(
                str(output_path),
                waveform.unsqueeze(0).cpu(),
                sample_rate
            )
        except Exception as e:
            print(f"Error saving audio: {str(e)}")
            raise