Spaces:
Sleeping
Sleeping
main app uloaded
Browse files- inference.py +213 -0
inference.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5Tokenizer,T5ForConditionalGeneration
|
2 |
+
import torch
|
3 |
+
import lightning as L
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
MODEL_NAME:str = "google/flan-t5-small"
|
10 |
+
|
11 |
+
def load_tokenizer(tokenizer_path:str):
|
12 |
+
tokenizer = T5Tokenizer.from_pretrained(tokenizer_path,local_files_only=True)
|
13 |
+
return tokenizer
|
14 |
+
|
15 |
+
def qa_preprocess_data(context:str, tokenizer:T5Tokenizer):
|
16 |
+
input_prefix:str = "Generate relevant question and answer for this paragraph:\n "
|
17 |
+
inputs = input_prefix + context
|
18 |
+
model_inputs:torch.Tensor = tokenizer(inputs,return_tensors="pt")
|
19 |
+
return model_inputs
|
20 |
+
|
21 |
+
def distractor_preprocess_data(context:str,question:str,
|
22 |
+
answer:str,tokenizer:T5Tokenizer):
|
23 |
+
|
24 |
+
input_prefix:str = "Generate 3 plausible but incorrect answer options (distractors) for the given question and correct answer, based on the provided context:"
|
25 |
+
inputs = f"{input_prefix}\nCONTEXT:\n{context}\nQUESTION: {question}\nANSWER: {answer}"
|
26 |
+
model_inputs:torch.Tensor = tokenizer(inputs,return_tensors="pt")
|
27 |
+
return model_inputs
|
28 |
+
|
29 |
+
|
30 |
+
class DistractorTrained(L.LightningModule):
|
31 |
+
def __init__(self):
|
32 |
+
super().__init__()
|
33 |
+
self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME)
|
34 |
+
|
35 |
+
|
36 |
+
def forward(self,input_ids,attention_mask):
|
37 |
+
return self.model.generate(input_ids=input_ids, attention_mask=attention_mask,
|
38 |
+
num_beams=4,max_new_tokens=80,
|
39 |
+
do_sample=True,temperature=1.2)
|
40 |
+
|
41 |
+
class QATrained(L.LightningModule):
|
42 |
+
def __init__(self):
|
43 |
+
super().__init__()
|
44 |
+
self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME)
|
45 |
+
|
46 |
+
def forward(self,input_ids:torch.Tensor,attention_mask:torch.Tensor,
|
47 |
+
num_beams:int=4,max_new_tokens:int=65,
|
48 |
+
temperature:float=1.2):
|
49 |
+
|
50 |
+
return self.model.generate(
|
51 |
+
input_ids=input_ids,attention_mask=attention_mask,
|
52 |
+
num_beams=num_beams,max_new_tokens=65,
|
53 |
+
do_sample=True,temperature=temperature
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
def load_qa_model(model_path:str):
|
58 |
+
model = QATrained.load_from_checkpoint(model_path)
|
59 |
+
return model
|
60 |
+
|
61 |
+
def load_distractor_model(model_path:str):
|
62 |
+
model = DistractorTrained.load_from_checkpoint(model_path)
|
63 |
+
return model
|
64 |
+
|
65 |
+
def predict_qa(model:QATrained,tokenizer:T5Tokenizer,model_inputs:torch.Tensor,
|
66 |
+
device:str="cpu"):
|
67 |
+
model.to(device)
|
68 |
+
model.eval()
|
69 |
+
with torch.inference_mode():
|
70 |
+
generated_ids = model(input_ids=model_inputs["input_ids"].to(device),
|
71 |
+
attention_mask = model_inputs["attention_mask"].to(device))
|
72 |
+
|
73 |
+
generated_ids = generated_ids.cpu()
|
74 |
+
decoded_predictions = [tokenizer.decode(ids,skip_special_tokens=True) for ids in generated_ids]
|
75 |
+
|
76 |
+
return decoded_predictions
|
77 |
+
|
78 |
+
def predict_distractor(model:DistractorTrained,tokenizer:T5Tokenizer,
|
79 |
+
model_inputs:torch.Tensor,device:str="cpu"):
|
80 |
+
model.to(device)
|
81 |
+
model.eval()
|
82 |
+
with torch.inference_mode():
|
83 |
+
generated_ids = model(input_ids=model_inputs["input_ids"].to(device),
|
84 |
+
attention_mask = model_inputs["attention_mask"].to(device))
|
85 |
+
|
86 |
+
generated_ids = generated_ids.cpu()
|
87 |
+
|
88 |
+
decoded_predictions = [tokenizer.decode(ids,skip_special_tokens=True) for ids in generated_ids]
|
89 |
+
|
90 |
+
return decoded_predictions
|
91 |
+
|
92 |
+
|
93 |
+
def main(user_input):
|
94 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
95 |
+
tokenizer_path:str = "./t5_tokenizer"
|
96 |
+
qa_model_path:str = "./qa_trained_model/qa-t5-small.ckpt"
|
97 |
+
distractor_model_path:str = "./distractor_trained_model/distractor_t5-small.ckpt"
|
98 |
+
tokenizer = load_tokenizer(tokenizer_path)
|
99 |
+
qa_model = load_qa_model(qa_model_path)
|
100 |
+
distractor_model = load_distractor_model(distractor_model_path)
|
101 |
+
qa_model_inputs = qa_preprocess_data(user_input,tokenizer)
|
102 |
+
qa_decoded_predictions = predict_qa(qa_model,tokenizer,qa_model_inputs,device=device)
|
103 |
+
qa_decoded_predictions = qa_decoded_predictions[0]
|
104 |
+
indices = []
|
105 |
+
start = 0
|
106 |
+
|
107 |
+
while True:
|
108 |
+
index = qa_decoded_predictions.find("[ANSWER] ",start)
|
109 |
+
|
110 |
+
if index==-1:
|
111 |
+
break
|
112 |
+
indices.append(index)
|
113 |
+
start = index + 1
|
114 |
+
|
115 |
+
question = qa_decoded_predictions[11:indices[0]].rstrip()
|
116 |
+
|
117 |
+
if len(indices)==1:
|
118 |
+
answer = qa_decoded_predictions[indices[0]+9:].rstrip()
|
119 |
+
|
120 |
+
if len(indices)>1:
|
121 |
+
answer = qa_decoded_predictions[indices[0]+9:indices[1]-1].rstrip()
|
122 |
+
|
123 |
+
filtered_ans = answer.replace("?",".")
|
124 |
+
|
125 |
+
distractor_model_inputs = distractor_preprocess_data(user_input,question,filtered_ans,tokenizer)
|
126 |
+
distractor_decoded_predictions = predict_distractor(distractor_model,tokenizer,distractor_model_inputs,device=device)
|
127 |
+
|
128 |
+
distractor_decoded_predictions = distractor_decoded_predictions[0]
|
129 |
+
|
130 |
+
option_strings = ["[OPTION 1]","[OPTION 2]","[OPTION 3]"]
|
131 |
+
|
132 |
+
option_indices:list[int] = []
|
133 |
+
|
134 |
+
for option in option_strings:
|
135 |
+
ind:int = distractor_decoded_predictions.find(option)
|
136 |
+
option_indices.append(ind)
|
137 |
+
|
138 |
+
for option in option_strings:
|
139 |
+
option1:str = distractor_decoded_predictions[11:option_indices[1]].replace(option,"").strip()
|
140 |
+
option2:str = distractor_decoded_predictions[option_indices[1]+10:option_indices[-1]].replace(option,"").strip()
|
141 |
+
option3:str = distractor_decoded_predictions[option_indices[1]+10:].replace(option,"").strip()
|
142 |
+
|
143 |
+
option4:str = answer
|
144 |
+
|
145 |
+
return {"question": question,
|
146 |
+
"option1": option1,
|
147 |
+
"option2": option2,
|
148 |
+
"option3": option3,
|
149 |
+
"option4": option4}
|
150 |
+
|
151 |
+
def shuffle_options(question_data):
|
152 |
+
options = [
|
153 |
+
question_data["option1"],
|
154 |
+
question_data["option2"],
|
155 |
+
question_data["option3"],
|
156 |
+
question_data["option4"]
|
157 |
+
]
|
158 |
+
correct_answer = question_data["option4"]
|
159 |
+
random.shuffle(options)
|
160 |
+
return options, correct_answer
|
161 |
+
|
162 |
+
def process_input(context):
|
163 |
+
question_data = main(context)
|
164 |
+
options, correct_answer = shuffle_options(question_data)
|
165 |
+
return question_data["question"], options, correct_answer
|
166 |
+
|
167 |
+
def check_answer(choice, correct_answer):
|
168 |
+
if choice == correct_answer:
|
169 |
+
return f'<p style="color: #28a745;">Correct!</p>'
|
170 |
+
else:
|
171 |
+
return f'<p style="color: #dc3545;">Incorrect ! Try again.</p>'
|
172 |
+
|
173 |
+
with gr.Blocks() as demo:
|
174 |
+
gr.Markdown("# MCQ Generator")
|
175 |
+
|
176 |
+
with gr.Row():
|
177 |
+
context_input = gr.Textbox(label="Context Paragraph", lines=5)
|
178 |
+
generate_button = gr.Button("Generate Question")
|
179 |
+
|
180 |
+
question_output = gr.Textbox(label="Question")
|
181 |
+
options_radio = gr.Radio(label="Options", choices=[])
|
182 |
+
submit_button = gr.Button("Submit Answer")
|
183 |
+
result_output = gr.HTML()
|
184 |
+
correct_answer = gr.State()
|
185 |
+
|
186 |
+
def update_interface(question, options, correct):
|
187 |
+
return {
|
188 |
+
question_output: question,
|
189 |
+
options_radio: gr.Radio(choices=options, label="Options"),
|
190 |
+
correct_answer: correct
|
191 |
+
}
|
192 |
+
|
193 |
+
generate_button.click(
|
194 |
+
process_input,
|
195 |
+
inputs=[context_input],
|
196 |
+
outputs=[question_output, options_radio, correct_answer]
|
197 |
+
).then(
|
198 |
+
update_interface,
|
199 |
+
inputs=[question_output, options_radio, correct_answer],
|
200 |
+
outputs=[question_output, options_radio, correct_answer]
|
201 |
+
)
|
202 |
+
|
203 |
+
submit_button.click(
|
204 |
+
check_answer,
|
205 |
+
inputs=[options_radio, correct_answer],
|
206 |
+
outputs=[result_output]
|
207 |
+
)
|
208 |
+
|
209 |
+
if __name__=="__main__":
|
210 |
+
demo.launch(debug=True)
|
211 |
+
|
212 |
+
|
213 |
+
|