Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -32,13 +32,13 @@ scheduler = CommitScheduler(
|
|
32 |
|
33 |
pc = Pinecone(api_key=os.environ.get("PINECONE"))
|
34 |
index = pc.Index("commonsense")
|
35 |
-
|
36 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "
|
37 |
retriever_tokenizer = AutoTokenizer.from_pretrained("psyche/dpr-longformer-ko-4096")
|
38 |
retriever = AutoModel.from_pretrained("psyche/dpr-longformer-ko-4096")
|
39 |
retriever.eval()
|
40 |
retriever.to(device)
|
41 |
-
|
42 |
def save_json(question: str, answer: str) -> None:
|
43 |
with scheduler.lock:
|
44 |
with JSON_DATASET_PATH.open("a") as f:
|
@@ -82,7 +82,7 @@ def generate(
|
|
82 |
for user, assistant in chat_history:
|
83 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
84 |
|
85 |
-
|
86 |
retriever_inputs = retriever_tokenizer([message], max_length=1024, truncation=True, return_tensors="pt")
|
87 |
retriever_inputs = {k:v.to(retriever.device) for k,v in retriever_inputs.items()}
|
88 |
with torch.no_grad():
|
@@ -99,7 +99,7 @@ def generate(
|
|
99 |
results = [result for result in results["matches"] if result["score"] > 0.6]
|
100 |
if len(results) > 0:
|
101 |
message = results[0]["metadata"]["text"] + f"\n\n위 문맥을 참고하여 질문 '{message}'에 답하면?"
|
102 |
-
|
103 |
conversation.append({"role": "user", "content": message })
|
104 |
|
105 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
|
|
|
32 |
|
33 |
pc = Pinecone(api_key=os.environ.get("PINECONE"))
|
34 |
index = pc.Index("commonsense")
|
35 |
+
"""
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
37 |
retriever_tokenizer = AutoTokenizer.from_pretrained("psyche/dpr-longformer-ko-4096")
|
38 |
retriever = AutoModel.from_pretrained("psyche/dpr-longformer-ko-4096")
|
39 |
retriever.eval()
|
40 |
retriever.to(device)
|
41 |
+
"""
|
42 |
def save_json(question: str, answer: str) -> None:
|
43 |
with scheduler.lock:
|
44 |
with JSON_DATASET_PATH.open("a") as f:
|
|
|
82 |
for user, assistant in chat_history:
|
83 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
84 |
|
85 |
+
"""
|
86 |
retriever_inputs = retriever_tokenizer([message], max_length=1024, truncation=True, return_tensors="pt")
|
87 |
retriever_inputs = {k:v.to(retriever.device) for k,v in retriever_inputs.items()}
|
88 |
with torch.no_grad():
|
|
|
99 |
results = [result for result in results["matches"] if result["score"] > 0.6]
|
100 |
if len(results) > 0:
|
101 |
message = results[0]["metadata"]["text"] + f"\n\n위 문맥을 참고하여 질문 '{message}'에 답하면?"
|
102 |
+
"""
|
103 |
conversation.append({"role": "user", "content": message })
|
104 |
|
105 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
|