File size: 4,784 Bytes
4375b7f
4e683ec
76a154f
 
 
b1c12fa
76a154f
d534002
e5eef56
76bf9d2
501c87a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76bf9d2
4e683ec
76a154f
 
4375b7f
76a154f
4e683ec
76bf9d2
76a154f
 
 
4e683ec
98df5b4
76a154f
4e683ec
8b8317c
d534002
4e683ec
 
76a154f
 
3fb8cb1
69b6dba
76bf9d2
 
 
 
b1c12fa
76a154f
 
4e683ec
76a154f
4e683ec
 
 
 
 
 
 
 
 
 
 
 
 
6111f2c
 
 
 
 
4e683ec
 
 
6111f2c
4e683ec
 
 
 
 
 
 
 
 
 
 
76a154f
4e683ec
 
 
 
76a154f
501c87a
 
 
76a154f
76bf9d2
4e683ec
 
 
a400f4b
4e683ec
 
76a154f
 
 
 
4e683ec
 
 
76a154f
 
 
76bf9d2
4e683ec
 
 
76a154f
 
 
4e683ec
 
 
 
76a154f
 
 
 
4e683ec
 
 
 
 
 
76bf9d2
4e683ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a154f
4e683ec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from pathlib import Path

from huggingface_hub import CommitScheduler


JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)

JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"

scheduler = CommitScheduler(
    repo_id="example-space-to-dataset-json",
    repo_type="dataset",
    folder_path=JSON_DATASET_DIR,
    path_in_repo="data",
)

def save_json(role: str, content: str) -> None:
    with scheduler.lock:
        with JSON_DATASET_PATH.open("a") as f:
            json.dump({"role": role, "content": content, "datetime": datetime.now().isoformat()}, f)
            f.write("\n")


MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Llama-3 7B MRC \
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    model_id = "psyche/llama3-8b-instruct-mrc-ift-0.2"
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False


connect = sqlite3.connect("history.db", check_same_thread=False)
cursor = connect.cursor()
cursor.execute(_TABLE)
connect.commit()


@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

    save_json("user", message)
    save_json("assistant", "".join(outputs))
    

    
chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.1,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.15,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()