Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
# from transformers import pipeline
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import tensorflow as tf
|
6 |
+
|
7 |
+
model = tf.keras.models.load_model("/content/model1_acc96_kera.h5")
|
8 |
+
|
9 |
+
# Function to preprocess the image and make predictions
|
10 |
+
def classify_alzheimers_image(input_image):
|
11 |
+
try:
|
12 |
+
# Preprocess the image (resize, normalize, etc.)
|
13 |
+
input_image = np.array(input_image)
|
14 |
+
input_image_copy = input_image.copy() # Making a copy to avoid the array reference issue
|
15 |
+
input_image_resized = np.array(Image.fromarray(input_image_copy).resize((128, 128))) / 255.0
|
16 |
+
input_image_resized = np.expand_dims(input_image_resized, axis=0)
|
17 |
+
|
18 |
+
# Making predictions
|
19 |
+
predictions = model.predict(input_image_resized)
|
20 |
+
|
21 |
+
# Getting the class with the highest probability
|
22 |
+
class_idx = np.argmax(predictions)
|
23 |
+
class_label = ["Mild Demented", "Moderate Demented", "Non-Demented", "Very Mild Demented"][class_idx]
|
24 |
+
confidence = predictions[0][class_idx]
|
25 |
+
|
26 |
+
return f"Prediction: {class_label}, Confidence: {confidence:.2f}"
|
27 |
+
except Exception as e:
|
28 |
+
return str(e)
|
29 |
+
|
30 |
+
# Creating a Gradio interface
|
31 |
+
iface = gr.Interface(
|
32 |
+
fn=classify_alzheimers_image,
|
33 |
+
inputs="image",
|
34 |
+
outputs="text",
|
35 |
+
title="Alzheimer's Disease Classification",
|
36 |
+
description=" Upload an MRI Image for classification.",
|
37 |
+
flagging_options = ["Wrong Prediction"],
|
38 |
+
theme = 'darkhuggingface'
|
39 |
+
)
|
40 |
+
|
41 |
+
# Launching the Gradio interface
|
42 |
+
iface.launch(inline = False)
|
43 |
+
|
44 |
+
|