Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,9 @@ from tensorflow.keras.preprocessing import image
|
|
4 |
import numpy as np
|
5 |
|
6 |
# Load the trained model
|
7 |
-
model = tf.keras.models.load_model('Model1_kera.h5')
|
|
|
|
|
8 |
|
9 |
# Define the class names
|
10 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
@@ -14,11 +16,15 @@ def predict(img):
|
|
14 |
img = img.resize((224, 224))
|
15 |
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
16 |
img_array = tf.expand_dims(img_array, 0)
|
17 |
-
|
18 |
predictions = model.predict(img_array)
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
return
|
22 |
|
23 |
# Create a Gradio interface
|
24 |
iface = gr.Interface(
|
|
|
4 |
import numpy as np
|
5 |
|
6 |
# Load the trained model
|
7 |
+
model = tf.keras.models.load_model('Model1_kera.h5', compile=False)
|
8 |
+
model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy'])
|
9 |
+
# model = tf.keras.models.load_model('Model1_kera.h5')
|
10 |
|
11 |
# Define the class names
|
12 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
|
|
16 |
img = img.resize((224, 224))
|
17 |
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
18 |
img_array = tf.expand_dims(img_array, 0)
|
19 |
+
|
20 |
predictions = model.predict(img_array)
|
21 |
+
class_labels = classes
|
22 |
+
# predictions = model.predict(img_array)
|
23 |
+
# predicted_class = classes[np.argmax(predictions[0])]
|
24 |
+
score = tf.nn.softmax(predictions[0])
|
25 |
+
print(f"{class_labels[tf.argmax(score)]}")
|
26 |
|
27 |
+
return f"{class_labels[tf.argmax(score)]}
|
28 |
|
29 |
# Create a Gradio interface
|
30 |
iface = gr.Interface(
|