Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
from tensorflow.keras.preprocessing import image
|
4 |
import numpy as np
|
5 |
|
6 |
# Load the trained model
|
7 |
-
model = tf.keras.models.load_model('
|
8 |
|
9 |
# Define the class names
|
10 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
11 |
|
12 |
# Function to preprocess the uploaded image and make predictions
|
13 |
def predict(img):
|
|
|
14 |
img = img.resize((224, 224))
|
15 |
img_array = image.img_to_array(img)
|
16 |
img_array = np.expand_dims(img_array, axis=0)
|
17 |
img_array = img_array / 255.0 # Normalize the image
|
18 |
|
|
|
19 |
predictions = model.predict(img_array)
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
return predicted_class
|
23 |
|
@@ -32,4 +72,3 @@ iface = gr.Interface(
|
|
32 |
|
33 |
# Launch the interface
|
34 |
iface.launch()
|
35 |
-
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import tensorflow as tf
|
3 |
+
# from tensorflow.keras.preprocessing import image
|
4 |
+
# import numpy as np
|
5 |
+
|
6 |
+
# # Load the trained model
|
7 |
+
# model = tf.keras.models.load_model('./model12_acc99_kera.h5')
|
8 |
+
|
9 |
+
# # Define the class names
|
10 |
+
# classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
11 |
+
|
12 |
+
# # Function to preprocess the uploaded image and make predictions
|
13 |
+
# def predict(img):
|
14 |
+
# img = img.resize((224, 224))
|
15 |
+
# img_array = image.img_to_array(img)
|
16 |
+
# img_array = np.expand_dims(img_array, axis=0)
|
17 |
+
# img_array = img_array / 255.0 # Normalize the image
|
18 |
+
|
19 |
+
# predictions = model.predict(img_array)
|
20 |
+
# predicted_class = classes[np.argmax(predictions[0])]
|
21 |
+
|
22 |
+
# return predicted_class
|
23 |
+
|
24 |
+
# # Create a Gradio interface
|
25 |
+
# iface = gr.Interface(
|
26 |
+
# fn=predict,
|
27 |
+
# inputs=gr.Image(type='pil'),
|
28 |
+
# outputs=gr.Textbox(label="Prediction"),
|
29 |
+
# title="Lung and Colon Cancer Detection",
|
30 |
+
# description="Upload an image of histopathological tissue to detect if it is a type of lung or colon cancer."
|
31 |
+
# )
|
32 |
+
|
33 |
+
# # Launch the interface
|
34 |
+
# iface.launch()
|
35 |
+
|
36 |
import gradio as gr
|
37 |
import tensorflow as tf
|
38 |
from tensorflow.keras.preprocessing import image
|
39 |
import numpy as np
|
40 |
|
41 |
# Load the trained model
|
42 |
+
model = tf.keras.models.load_model('path/to/your/saved_model')
|
43 |
|
44 |
# Define the class names
|
45 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
46 |
|
47 |
# Function to preprocess the uploaded image and make predictions
|
48 |
def predict(img):
|
49 |
+
# Resize and preprocess the image
|
50 |
img = img.resize((224, 224))
|
51 |
img_array = image.img_to_array(img)
|
52 |
img_array = np.expand_dims(img_array, axis=0)
|
53 |
img_array = img_array / 255.0 # Normalize the image
|
54 |
|
55 |
+
# Make predictions
|
56 |
predictions = model.predict(img_array)
|
57 |
+
print(f"Predictions: {predictions}") # Debug: Print the raw prediction values
|
58 |
+
|
59 |
+
predicted_class_index = np.argmax(predictions[0])
|
60 |
+
predicted_class = classes[predicted_class_index]
|
61 |
|
62 |
return predicted_class
|
63 |
|
|
|
72 |
|
73 |
# Launch the interface
|
74 |
iface.launch()
|
|