Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -37,9 +37,17 @@ import gradio as gr
|
|
37 |
import tensorflow as tf
|
38 |
from tensorflow.keras.preprocessing import image
|
39 |
import numpy as np
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# Load the trained model
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Define the class names
|
45 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
@@ -47,20 +55,27 @@ classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma',
|
|
47 |
# Function to preprocess the uploaded image and make predictions
|
48 |
def predict(img):
|
49 |
try:
|
|
|
|
|
50 |
# Resize and preprocess the image
|
51 |
img = img.resize((224, 224))
|
52 |
img_array = image.img_to_array(img)
|
53 |
img_array = np.expand_dims(img_array, axis=0)
|
54 |
|
|
|
|
|
55 |
# Make predictions
|
56 |
predictions = model.predict(img_array)
|
57 |
predicted_class_index = np.argmax(predictions[0])
|
58 |
predicted_class = classes[predicted_class_index]
|
59 |
|
|
|
|
|
60 |
# Return the predicted class and the raw predictions
|
61 |
-
return predicted_class, predictions[0]
|
62 |
except Exception as e:
|
63 |
-
|
|
|
64 |
return str(e), str(e)
|
65 |
|
66 |
# Create a Gradio interface
|
@@ -76,4 +91,4 @@ iface = gr.Interface(
|
|
76 |
)
|
77 |
|
78 |
# Launch the interface
|
79 |
-
iface.launch()
|
|
|
37 |
import tensorflow as tf
|
38 |
from tensorflow.keras.preprocessing import image
|
39 |
import numpy as np
|
40 |
+
import logging
|
41 |
+
|
42 |
+
# Set up logging
|
43 |
+
logging.basicConfig(level=logging.DEBUG)
|
44 |
|
45 |
# Load the trained model
|
46 |
+
try:
|
47 |
+
model = tf.keras.models.load_model('path/to/your/model.h5')
|
48 |
+
logging.info("Model loaded successfully.")
|
49 |
+
except Exception as e:
|
50 |
+
logging.error(f"Error loading model: {e}")
|
51 |
|
52 |
# Define the class names
|
53 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
|
|
55 |
# Function to preprocess the uploaded image and make predictions
|
56 |
def predict(img):
|
57 |
try:
|
58 |
+
logging.debug("Received image for prediction.")
|
59 |
+
|
60 |
# Resize and preprocess the image
|
61 |
img = img.resize((224, 224))
|
62 |
img_array = image.img_to_array(img)
|
63 |
img_array = np.expand_dims(img_array, axis=0)
|
64 |
|
65 |
+
logging.debug("Image preprocessed successfully.")
|
66 |
+
|
67 |
# Make predictions
|
68 |
predictions = model.predict(img_array)
|
69 |
predicted_class_index = np.argmax(predictions[0])
|
70 |
predicted_class = classes[predicted_class_index]
|
71 |
|
72 |
+
logging.debug(f"Prediction successful: {predicted_class}")
|
73 |
+
|
74 |
# Return the predicted class and the raw predictions
|
75 |
+
return predicted_class, predictions[0].tolist()
|
76 |
except Exception as e:
|
77 |
+
logging.error(f"Error during prediction: {e}")
|
78 |
+
# Print the error message in the output
|
79 |
return str(e), str(e)
|
80 |
|
81 |
# Create a Gradio interface
|
|
|
91 |
)
|
92 |
|
93 |
# Launch the interface
|
94 |
+
iface.launch()
|