Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,7 +39,7 @@ from tensorflow.keras.preprocessing import image
|
|
39 |
import numpy as np
|
40 |
|
41 |
# Load the trained model
|
42 |
-
model =
|
43 |
|
44 |
# Define the class names
|
45 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
@@ -48,27 +48,25 @@ classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma',
|
|
48 |
def predict(img):
|
49 |
# Resize and preprocess the image
|
50 |
img = img.resize((224, 224))
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
# img = image.resize((224,224))
|
55 |
-
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
56 |
-
img_array = tf.expand_dims(img_array, 0)
|
57 |
-
|
58 |
# Make predictions
|
59 |
predictions = model.predict(img_array)
|
60 |
-
print(f"Predictions: {predictions}") # Debug: Print the raw prediction values
|
61 |
-
|
62 |
predicted_class_index = np.argmax(predictions[0])
|
63 |
predicted_class = classes[predicted_class_index]
|
64 |
|
65 |
-
|
|
|
66 |
|
67 |
# Create a Gradio interface
|
68 |
iface = gr.Interface(
|
69 |
fn=predict,
|
70 |
inputs=gr.Image(type='pil'),
|
71 |
-
outputs=
|
|
|
|
|
|
|
72 |
title="Lung and Colon Cancer Detection",
|
73 |
description="Upload an image of histopathological tissue to detect if it is a type of lung or colon cancer."
|
74 |
)
|
|
|
39 |
import numpy as np
|
40 |
|
41 |
# Load the trained model
|
42 |
+
model = tf.keras.models.load_model('./model12_acc99_kera.h5')
|
43 |
|
44 |
# Define the class names
|
45 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
|
|
48 |
def predict(img):
|
49 |
# Resize and preprocess the image
|
50 |
img = img.resize((224, 224))
|
51 |
+
img_array = image.img_to_array(img)
|
52 |
+
img_array = np.expand_dims(img_array, axis=0)
|
53 |
+
|
|
|
|
|
|
|
|
|
54 |
# Make predictions
|
55 |
predictions = model.predict(img_array)
|
|
|
|
|
56 |
predicted_class_index = np.argmax(predictions[0])
|
57 |
predicted_class = classes[predicted_class_index]
|
58 |
|
59 |
+
# Return the predicted class and the raw predictions
|
60 |
+
return predicted_class, predictions[0]
|
61 |
|
62 |
# Create a Gradio interface
|
63 |
iface = gr.Interface(
|
64 |
fn=predict,
|
65 |
inputs=gr.Image(type='pil'),
|
66 |
+
outputs=[
|
67 |
+
gr.Textbox(label="Prediction"),
|
68 |
+
gr.Label(label="Raw Predictions")
|
69 |
+
],
|
70 |
title="Lung and Colon Cancer Detection",
|
71 |
description="Upload an image of histopathological tissue to detect if it is a type of lung or colon cancer."
|
72 |
)
|