Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,186 +1,34 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import tensorflow as tf
|
3 |
-
# from tensorflow.keras.preprocessing import image
|
4 |
-
# import numpy as np
|
5 |
-
|
6 |
-
# # Load the trained model
|
7 |
-
# model = tf.keras.models.load_model('./model12_acc99_kera.h5')
|
8 |
-
|
9 |
-
# # Define the class names
|
10 |
-
# classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
11 |
-
|
12 |
-
# # Function to preprocess the uploaded image and make predictions
|
13 |
-
# def predict(img):
|
14 |
-
# img = img.resize((224, 224))
|
15 |
-
# img_array = image.img_to_array(img)
|
16 |
-
# img_array = np.expand_dims(img_array, axis=0)
|
17 |
-
# img_array = img_array / 255.0 # Normalize the image
|
18 |
-
|
19 |
-
# predictions = model.predict(img_array)
|
20 |
-
# predicted_class = classes[np.argmax(predictions[0])]
|
21 |
-
|
22 |
-
# return predicted_class
|
23 |
-
|
24 |
-
# # Create a Gradio interface
|
25 |
-
# iface = gr.Interface(
|
26 |
-
# fn=predict,
|
27 |
-
# inputs=gr.Image(type='pil'),
|
28 |
-
# outputs=gr.Textbox(label="Prediction"),
|
29 |
-
# title="Lung and Colon Cancer Detection",
|
30 |
-
# description="Upload an image of histopathological tissue to detect if it is a type of lung or colon cancer."
|
31 |
-
# )
|
32 |
-
|
33 |
-
# # Launch the interface
|
34 |
-
# iface.launch()
|
35 |
-
|
36 |
import gradio as gr
|
37 |
import tensorflow as tf
|
38 |
from tensorflow.keras.preprocessing import image
|
39 |
import numpy as np
|
40 |
-
import logging
|
41 |
-
|
42 |
-
# Set up logging
|
43 |
-
logging.basicConfig(level=logging.DEBUG)
|
44 |
-
|
45 |
-
# Initialize the model variable
|
46 |
-
model = None
|
47 |
|
48 |
# Load the trained model
|
49 |
-
|
50 |
-
model_path = './Model1_kera.h5'
|
51 |
-
logging.info(f"Loading model from: {model_path}")
|
52 |
-
model = tf.keras.models.load_model(model_path)
|
53 |
-
logging.info("Model loaded successfully.")
|
54 |
-
except Exception as e:
|
55 |
-
logging.error(f"Error loading model: {e}")
|
56 |
|
57 |
# Define the class names
|
58 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
59 |
|
60 |
# Function to preprocess the uploaded image and make predictions
|
61 |
def predict(img):
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
logging.debug("Image preprocessed successfully.")
|
72 |
-
|
73 |
-
# Ensure the model is loaded
|
74 |
-
if model is None:
|
75 |
-
raise ValueError("Model is not loaded properly.")
|
76 |
-
|
77 |
-
# Make predictions
|
78 |
-
predictions = model.predict(img_array)
|
79 |
-
predicted_class_index = np.argmax(predictions[0])
|
80 |
-
predicted_class = classes[predicted_class_index]
|
81 |
-
|
82 |
-
logging.debug(f"Prediction successful: {predicted_class}")
|
83 |
-
|
84 |
-
# Return the predicted class and the raw predictions
|
85 |
-
return predicted_class, predictions[0].tolist()
|
86 |
-
except Exception as e:
|
87 |
-
logging.error(f"Error during prediction: {e}")
|
88 |
-
# Print the error message in the output
|
89 |
-
return str(e), str(e)
|
90 |
|
91 |
# Create a Gradio interface
|
92 |
iface = gr.Interface(
|
93 |
fn=predict,
|
94 |
inputs=gr.Image(type='pil'),
|
95 |
-
outputs=
|
96 |
-
gr.Textbox(label="Prediction"),
|
97 |
-
gr.Label(label="Raw Predictions")
|
98 |
-
],
|
99 |
title="Lung and Colon Cancer Detection",
|
100 |
description="Upload an image of histopathological tissue to detect if it is a type of lung or colon cancer."
|
101 |
)
|
102 |
|
103 |
# Launch the interface
|
104 |
iface.launch()
|
105 |
-
# import gradio as gr
|
106 |
-
# import tensorflow as tf
|
107 |
-
# from tensorflow.keras.preprocessing import image as keras_image
|
108 |
-
# from PIL import Image
|
109 |
-
# import numpy as np
|
110 |
-
# import logging
|
111 |
-
# import os
|
112 |
-
|
113 |
-
# # Set up logging
|
114 |
-
# logging.basicConfig(level=logging.DEBUG)
|
115 |
-
|
116 |
-
# # Initialize the model variable
|
117 |
-
# model = None
|
118 |
-
|
119 |
-
# # Function to load the model
|
120 |
-
# def load_model():
|
121 |
-
# global model
|
122 |
-
# model_path = r'Model1_kera.h5' # Replace with the actual path to your model file
|
123 |
-
# if not os.path.exists(model_path):
|
124 |
-
# logging.error(f"Model file does not exist at path: {model_path}")
|
125 |
-
# return False
|
126 |
-
# try:
|
127 |
-
# logging.info(f"Loading model from: {model_path}")
|
128 |
-
# model = tf.keras.models.load_model(model_path)
|
129 |
-
# logging.info("Model loaded successfully.")
|
130 |
-
# return True
|
131 |
-
# except Exception as e:
|
132 |
-
# logging.error(f"Error loading model: {e}")
|
133 |
-
# return False
|
134 |
-
|
135 |
-
# # Load the model when the script starts
|
136 |
-
# model_loaded = load_model()
|
137 |
-
|
138 |
-
# # Define the class names
|
139 |
-
# classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
140 |
-
|
141 |
-
# # Function to preprocess the uploaded image and make predictions
|
142 |
-
# def predict(img):
|
143 |
-
# global model
|
144 |
-
# try:
|
145 |
-
# logging.debug("Received image for prediction.")
|
146 |
-
|
147 |
-
# # Resize and preprocess the image
|
148 |
-
# img = img.resize((224, 224))
|
149 |
-
# img_array = keras_image.img_to_array(img)
|
150 |
-
# img_array = tf.expand_dims(img_array, 0) # Add batch dimension
|
151 |
-
|
152 |
-
# logging.debug("Image preprocessed successfully.")
|
153 |
-
|
154 |
-
# # Ensure the model is loaded
|
155 |
-
# if model is None:
|
156 |
-
# raise ValueError("Model is not loaded properly.")
|
157 |
-
|
158 |
-
# # Make predictions
|
159 |
-
# predictions = model.predict(img_array)
|
160 |
-
# score = tf.nn.softmax(predictions[0])
|
161 |
-
# predicted_class_index = tf.argmax(score).numpy()
|
162 |
-
# predicted_class = classes[predicted_class_index]
|
163 |
-
|
164 |
-
# logging.debug(f"Prediction successful: {predicted_class}")
|
165 |
-
|
166 |
-
# # Return the predicted class and the raw predictions
|
167 |
-
# return predicted_class, predictions[0].tolist()
|
168 |
-
# except Exception as e:
|
169 |
-
# logging.error(f"Error during prediction: {e}")
|
170 |
-
# # Print the error message in the output
|
171 |
-
# return str(e), str(e)
|
172 |
-
|
173 |
-
# # Create a Gradio interface
|
174 |
-
# iface = gr.Interface(
|
175 |
-
# fn=predict,
|
176 |
-
# inputs=gr.Image(type='pil'),
|
177 |
-
# outputs=[
|
178 |
-
# gr.Textbox(label="Prediction"),
|
179 |
-
# gr.Label(label="Raw Predictions")
|
180 |
-
# ],
|
181 |
-
# title="Lung and Colon Cancer Detection",
|
182 |
-
# description="Upload an image of histopathological tissue to detect if it is a type of lung or colon cancer."
|
183 |
-
# )
|
184 |
-
|
185 |
-
# # Launch the interface
|
186 |
-
# iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
from tensorflow.keras.preprocessing import image
|
4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load the trained model
|
7 |
+
model = tf.keras.models.load_model('Model1_kera.h5')
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Define the class names
|
10 |
classes = ['Colon Adenocarcinoma', 'Colon Benign Tissue', 'Lung Adenocarcinoma', 'Lung Benign Tissue', 'Lung Squamous Cell Carcinoma']
|
11 |
|
12 |
# Function to preprocess the uploaded image and make predictions
|
13 |
def predict(img):
|
14 |
+
img = img.resize((224, 224))
|
15 |
+
img_array = image.img_to_array(img)
|
16 |
+
img_array = np.expand_dims(img_array, axis=0)
|
17 |
+
img_array = img_array / 255.0 # Normalize the image
|
18 |
+
|
19 |
+
predictions = model.predict(img_array)
|
20 |
+
predicted_class = classes[np.argmax(predictions[0])]
|
21 |
+
|
22 |
+
return predicted_class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Create a Gradio interface
|
25 |
iface = gr.Interface(
|
26 |
fn=predict,
|
27 |
inputs=gr.Image(type='pil'),
|
28 |
+
outputs=gr.Textbox(label="Prediction"),
|
|
|
|
|
|
|
29 |
title="Lung and Colon Cancer Detection",
|
30 |
description="Upload an image of histopathological tissue to detect if it is a type of lung or colon cancer."
|
31 |
)
|
32 |
|
33 |
# Launch the interface
|
34 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|